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Modelling of an ideal model of multi-mass pendulum chain. We observed chaos and studied the
initial-condition dependent, quasi-periodic motion as time progress, or with different number of
masses on the chain. We also analysed kinetic and total energies to find conservation of energy.
And studied total and available energies to confirm thermodynamic behaviour in long chains.

I. INTRODUCTION

A common example for chaotic dynamic systems is the
pendulum chain. Dynamics in a double-chain pendu-
lum has been explored by Schuster in 1984 as one of the
most simple examples of classical chaos. [1] Many vari-
ants of the system have been explored, including: hori-
zontally shaken pendulum chain by Alexander, Sidhu &
Kevrekidis in 2014 [2], double-square pendulum by Rafat,
Wheatland & Bedding in 2016. [3]

In this manuscript, we investigate the dynamics and
energies of an idealistic model of multi-mass pendulum
chain system, with each masses connect by frictionless
hinges & identical inelastic rods. Their movement re-
stricted on a plane. Using animation, trajectory plots,
phase portraits and Fourier transforms, we specifically
look at the problem where the last mass in the chain is
given a force from a still state.

This manuscript is organised as follows: Section II will
present a guide to the idealistic mechanical model. Sec-
tion III presents the standard algorithm constructed, in-
cluding Runge Kutta method for time-stepping, using
Python. Section IV is a summary of codes written. Sec-
tion V is the modelling results and discussions, including
efficiency analysis, dynamics analysis and energy analy-
sis.

II. MECHANICAL MODEL

To construct the model of a pendulum chain, we first
start from the mechanical balance of force for a single
pendulum. Considering it’s motion in terms of angular
velocity, the balance between tension and gravitational
pull

mθ′′(t) = −g
l

sin θ

where g is the gravitational constant, m is the mass and θ
is the angle between the pendulum rod and the vertical z-
axis. The first order derivative of θ is the angular velocity
ω. Extrapolating this equation for N -masses with con-
straints of inelasticity in connection, balance of tension
force with gravitational pull Dr. Geoffrey Vasil obtained
the model

L · T = ω2 + e0 cos θ0 (1)

where the angular velocity vector,

ω =
dθ

dt
(2)

and it’s derivative, the angular acceleration

dω

dt
= D · T − e0 sin θ0 (3)

where T are is a column vector of tensions experienced
by the masses. e0 is a column vector with 0’s in all
entries expect the first, which is a 1. L(θ) & D(θ) are
symmetric and anti-symmetric sparce matrices that mim-
ics a first and second-oder finite-difference derivatives re-
spectively. This is a brief summary of an optimised me-
chanical model of the pendulum chain, formulated by Dr.
Geoffrey Vasil in 2018.

FIG. 1. Basic schematic of a 3 mass pendulum chain

Figure 1 is an simple pendulum chain system with 3
masses. Considering local angles, we can summarise the
Cartesian coordinate of the masses in the chain to be a
sum of sine or cosine of angle distribution, i.e.

xk =

k−1∑
i=1

sin θi and zk =

k−1∑
i=1

− cos θi

and their velocities

vxk
=

k−1∑
i=0

ωi cos θi and vzk =

k−1∑
i=0

ωi sin θi
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III. ALOGIRTHM

For an inital state, we define an initial state vector
as the concatenation of the angles and angular velocities
vectors.

l =

(
θ
ω

)
we define the mechanical system as a function f , such
that

dl

dt
= f(l) (4)

To solve the function, we first unpack l into the angles
and angular velocity vector components,

θ = li for 0 ≤ i ≤ N − 1

ω = lj for N ≤ j ≤ 2N

Then we compute the difference between angles δ, where

δj = θk+1 − θk for 0 ≤ k ≤ N − 2

And construct banded matrices L(δ) and D(δ),

D(δ) =



0 sin δ0 0 0 0
− sin δ0 0 sin δ1 0 0

0 − sin δ1 0
. . . 0

0 0
. . . 0 sin δN−2

0 0 0 − sin δN−2 0



L(δ) =



1 cos δ0 0 0 0
cos δ0 2 cos δ1 0 0

0 cos δ1 2
. . . 0

0 0
. . . 2 cos δN−2

0 0 0 cos δN−2 2


The we compute of right hand side of equation (1),

R = ω2 + e0 cos θ0

where the quadratic term of angular velocity, ω2, indi-
cates element by element multiplication and R = L · T .
Then we can invert the matrix to solve for the tension
vector. Using the tension vector we can compute the
right hand side of equation (3),

α = D · T − e0 sin θ0

Then the output of the function is the concatenation of
the angular velocities vector and the vector α = dω

dt ,

f(l) =

(
ω
α

)

This was formulated in Python as class chain of script
pendulum.py. [? ]

Using Runge Kutta methods we can solve the derivative
in equation (4),

ln+1 = ln + h

s∑
m=1

bmkm

where

k1 = f(ln)

k2 = f(ln + h(a21k1))

k3 = f(ln + h(a31k1 + a32k2))

...

km = f

ln + h

m−1∑
j=1

amjkj


Tableus of a and b that we can implement includes
Fehlberg, Cash-Karp and Dormand-Prince. [4] These
methods is formulated in Python as class timestepper

of script pendulum.py.

IV. CODE SUMMARY

All code for this project is included in the script
pendulum.py. Main components of this script includes
two classes, chain and timestepper, and functions for
convenient modelling and analysis.

Class chain includes: an standard algorithm for
the mechanical model, an alternative code for the
same algorithm alt f, function coordinates to deter-
mine the cartesian coordinates of each mass, function
perturb fstill to create initial state of all massess still
with only the last mass with perturbation of non-zero an-
gular velocity ωN 6= 0. This class also includes functions
velocities, kpe, total energy, available energy to
calculate physical properties of the system correspond-
ing to their names. Note that function kpe calculates
the kinetic and potential energy for the entire chain or
for individual masses.

Class timestepper is the python formulation of the
Runge-Kutta method, with selection different methods
through importing tableau from script rk base.py and
calculation of step-size after each step.

Functions solve and dynamics that implements the
two classes and functions for convenience in modelling,
the latter includes calculation of energies. Functions
animate and animate path animates the motion of the
pendulum chain, while function path shows the path of
an individual mass and function phasep plots the phase
portrait.
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Functions plotter and indi anal calculates and plots
the Fourier transform, power spectrum and log-log power
spectrum of calculated energies.

V. RESULTS AND DISCUSSION

A. Efficiency analysis

The code was tested for N = 1000, 2000, 5000, with
corresponding initial perturbations of ω0 = 50, 100, 250.
According to results in Table 1, calculations of energies is
not computational expensive. For increasing number of
masses and proportional increase of perturbation, time
requirement increase linearly while peaking around N =
1200.

N ω0 Mean (s) STD (s) Mean* (s) STD* (s)

1000 50 17 0.91 18.2 1.18

2000 100 24.1 2.47 22.6 1.87

5000 250 39 2.37 37.4 1.89

Table 1. Results of timeit for time range T = 200, ini-
tial step-size of dt = 0.01 and data collection frequency
of every 20 steps. Mean* and STD* are results of im-
plementing the helper funtion solve while Mean* and
STD* are results of function dynamics which includes
calculation of energies.

FIG. 2. Efficiency testing for 10 to 5000 masses with increas-
ing initial perturbation 1/20 of number of masses, time range
T = 200, initial step-size of dt = 0.01 and data collection
frequency of every 20 steps

The most time consuming component of the code is the
solve banded function from scipy.sparse.linalg used
to solve for the tension vector. Note that that setting of
initial perturbation too high will cause overflow due to
insufficiency in storage precision. We set ω in our code to
be of type double to increase the overflow limit. A safe
approx. maximum ω0 is around a quarter of the number
of masses N .

B. Chaos in the motion of the pendulum chain

Schuster in 1984 found the simplest example of chaos
to be the motion of a double-chain pendulum. We con-
firm this through modelling a two mass pendulum chain.
Plotting the path of the motions of the two masses for
perturbation of ωN = 1 from an initially still hanging
state, we can see that the path is much wider for the
2-nd mass, but no obvious chaos is presented. If we in-
crease the perturbation to ωN = 3, then as we can see
from Figure 3, the paths becomes chaotic.

Through phase plots in Figure 4, we can clearly observe
uniformity for chain with perturbation of ωN = 1, where
the path of the second mass encloses path of first mass,
while displaying high similarity with more periods. The
multi-period behaviour in the both masses is a sign of the
system approaching chaotic behaviour. [5] If we increase
the perturbation to ωN = 3, then the periodic behaviour
is reduced, paths covers a large part of the phase plot,
indicating chaos in the motion of the pendulum chain.

To further validate chaos, in Figure 5 we slightly
changed the perturbation to ωN = 2.9 and ωN = 3.2,
comparing the trajectories of second masses to the tra-
jectory of ωN = 3 perturbated chain in Figure 3, we see
significant changes, which indicates high sensitivity of the
system on initial conditions. This dependency on initial
conditions is the key feature of chaos.

C. Analysis of dynamics

Pendulum chains with enough masses and large enough
perturbation displays bouncing motions whist the chain
is perfectly in-extendable. A likely explanation is the
large degrees of freedom present in the chain. This kind
of motions can be seen in trajectories of masses at the end
of chain in Figure 6. As the number of masses increases,
the frequency of bouncing motion is reduced, while the
chain displays a wave-like behaviour.

Motion of pendulum chains tends to be less chaotic
with increasing number of masses. In Figure 6, we also
plotted the phase portraits of the end masses for a num-
ber of chains with N = 10 to N = 1000. One feature of
the plot is the merger of two cycles into one. In Figure 7,
we attempt to explore this through modelling chains with
mass number betweenN = 10 andN = 50, where it’s dis-
covered that the the merged cycles separates and recom-
bines frequently before reaching the final combined cycle.
Centres of cycles are around 0, 6 and 12, corresponding to
approximately 0, 360 and 720 degrees, indicating it’s ori-
gin been ’full circle’ trajectories. For N > 50, separation
no longer occurs, since as number of masses increases,
initial perturbation will become insufficient for this kind
of motion, thus reaching a cycle in the phase portrait.
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FIG. 3. Modelling of a double chain pendulum. Plots on the left are paths of the motion of individual masses for initial
perturbation of ωN = 1 while plots on the right are for ωN = 3

FIG. 4. Modelling of a double chain pendulum. Phase portraits for initial perturbation of ωN = 1 while plots on the right are
for ωN = 3. Individual masses are plotted in different colors.

FIG. 5. Modelling of a double chain pendulum. Paths of the second mass for initial perturbation of ωN = 2.9 (left) and
ωN = 3.2 (right).
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Reduction of path spread in the phase portrait indicates
reducing chaos with higher number of masses.

For further validation, we plot phase portraits for the
tenth mass and the first mass on the pendulum chain in
Figure 8. As the number of masses increases, paths of the
tenth mass tends towards the first mass. So the motion
of individual masses becomes ’synchronised’ with masses
closer to the origin. Converging phase portraits indicates
reduction in randomness in motion of the higher masses,
resulting in reduction in initial condition sensitivity, thus
less chaotic behaviour. Note that the double periodic
behaviour still exists for all N > 10, so motion of the
chain still approached chaos.

D. Analysis of total & available energies

Total energy of the pendulum chain, consisting of ki-
netic and potential energy components, is

E =
1

2

N∑
k=1

v2xk
+ v2zk︸ ︷︷ ︸

KE

+

N∑
k=1

zk︸ ︷︷ ︸
PE

while the available energy,

A =
1

2

N−1∑
k=0

(
v2xk

+ v2zk − 4(N − k) cos2
(
θk/2

2

))
In Figure 9, we plotted the available and total energies

for pendulum chains of various length. For chains with
only a small number of masses, there exists a fixed differ-
ence between total & available energies (in this case for
N = 10, ωN = 50, difference is a fixed value of 55 J). For
chains with large number of masses, this difference is no
longer fixed and the available energies becomes the inver-
sion of total energies with respect to a mean difference
between them.

Reduction of available energy indicates ’thermody-
namic’ behaviour in the long pendulum chains. Avail-
able energy is transformed into unavailable energy as it
reduces. This is an entropy increasing process due to
the second law of thermodynamics, which states that to-
tal entropy does not decrease with time. Since entropy
is the possible energy distributions of the system, lower
available energy is a trend towards greater disorder. This
indicates that for pendulum chains with enough masses
(i.e. enough degrees of freedom) the motion becomes
more chaotic as time progresses.

D. Analysis of kinetic & potential energies of
pendulum chain

In Figure 10, we plotted the overall change in kinetic
& potential energies with time and their correspond-

ing power spectrums for chains with various number of
masses. Since the same initial perturbation is used for
these chains, frequency ’beats’ which relates to changes
in kinetic or potential energies reduces as the number of
masses increases.

Notice that while change in amplitude is the same for
kinetic and potential energies, potential energy deviates
significantly from 0 as compared to kinetic energy. This
is due to the fact that potential energies, even at max-
imum kinetic energies, remains non-zero. While kinetic
energies approaches 0 when the pendulum chain reaches a
relatively high position. A physical explanation for this
is that the pendulum, even at the still state, is above
ground and so there exists balance between gravitational
potential and tension forces at the point of maximum
kinetic energy.

Similarity between the power spectrums of kinetic and
potential energy indicates conservation of energies. Since
real peaks on the spectrum have harmonics, small devi-
ations between the change of kinetic/potential energies
might cause accumulated deviations of the harmonics.
High similarity between kinetic and potential energies
power spectrums indicates similar changes in kinetic and
potential energies. As masses gains kinetic energy, they
lose potential energy, visa versa.

Also, in the power spectrums for chain with 1000
masses, peaks seems to be enclosed by an oscillating en-
velope. A wild guess for why this spectral envelop occurs
is oscillations between masses in the chain.

E. Analysis of kinetic & potential energies of
individual masses

The kinetic and potential energies of individual masses
on the pendulum chain are

KEk =
1

2
v2xk

+ v2zk

PEk = zk

Individual energies on chains with 10 and 100 masses
are presented in Figure 11 and 12 respectively. In
both figures, notice that closer to the centre, change
in kinetic/potential energies of masses tends to be simi-
lar. Whilst as masses approached the end of the chain,
change in energy becomes more uniform. Comparing the
two figures, we can further confirm the reduction in ki-
netic/potential energy frequency of change as number of
masses in the chain increases.

Theses plots provides rich amount of interesting fea-
tures, including similarity in power spectrum peak loca-
tions in high frequency regions for 100 mass chain, and
similarity in low frequency regions for 10 mass chain.
Also, the step like reduction in peaks’ amplitudes for
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FIG. 6. Modelling of chain pendulum with different number of masses. Top plots presents paths of the last masses, bottom are
phase portraits of the last masses. N = 10, 50, 100, 500, 1000 for plots from left to right

FIG. 7. Modelling of chain pendulum with different number of masses. Phase portraits of the 1st and 10th masses. N =
10, 20, 30, 40, 50 for plots from left to right

FIG. 8. Modelling of chain pendulum with different number of masses. Phase portraits of the 1st and 10th masses. N =
10, 230, 450, 670, 1000 for plots from left to right
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FIG. 9. Energy distribution of chain pendulum with different number of masses. Plot of total & available energies of pendulum
chains with mass numbers N = 10, 100, 1000 (initial perturbation ωN = 50 and their corresponding power spectrums in log-log
space.

masses close to the origin on the 100 mass chain. Fur-
ther exploring these features may provide insights into
dynamics of chaotic systems.

VI. CONCLUSION

Through modelling of an ideal pendulum chain, we ob-
served chaos in motion of a simple 2-mass chain and ver-
ified it’s dependence on initial conditions. We observed
bouncing motion through animation and analysed the dy-
namics of multi-mass chains, where the chaotic behaviour
reduces as the number of masses on the chain increases.
Analysis of available energies showed thermodynamic be-
haviour inside long chains and indicates increasing chaos
as time progresses. Analysis of kinetic and potential ener-
gies of the overall chain or individual masses showed con-
servation and provided a rich amount of spectral feature
which be of interest for further investigation. Further

studies can include analysis of Poincare sections, the use
of low-pass or high-pass filter to investigate spectra and
the addition of forces from the environment, e.g. wind,
to this ideal model.
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FIG. 10. Kinetic and potential energies on a chain pendulum with N = 10, 100, 1000 masses (initial perturbation ωN = 5) and
their corresponding power spectrums in log-log space.
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FIG. 11. Kinetic and potential energies on a chain pendulum with N = 10 masses (initial perturbation ωN = 5) and their
corresponding power spectrums in log-log space. Index of individual masses chosen are 0, 2, 4, 6, 8.
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FIG. 12. Kinetic and potential energies of individual masses on a chain pendulum with N = 100 masses (initial perturbation
ωN = 5) and their corresponding power spectrums in log-log space.Index of individual masses chosen are 0, 20, 40, 60, 80.
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