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Abstract
With the the unprecedented growth of textual datasets, more information is created to an extent where it
is infeasible for a person to digest all the available content. This motivates the use of topic modeling to
automatically infer the hidden topical structures of a large and unstructured collection of documents.
This thesis starts with literature reviews on two existing topic modeling techniques – the traditional
topic modeling technique that views the text corpora as a word-document matrix and the network
approach that represents the texts as a bipartite network of words and documents. However, these
two models are based only on word frequencies. The first objective of this thesis is then to extend the
network model to incorporate auxiliary information present in text corpora. Then we investigate whether
incorporating further information available about documents can improve their classification. The models
were extended in the same network framework. Through experiments and quantitative assessments on
the Wikipedia articles, we find that the extended topic models fit better to the data as we utilize more
auxiliary information and lead to a better classification of documents.
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1.1 Topic Modeling and Community Detection: An Overview
1.1.1 Topic Modeling: Motivation and a Concrete Example

We live in the information era. Information can be obtained easily and instantly via the Internet. This has
fundamentally changed the dynamic of information acquisition. For example, we can (1) seek views from
social media, (2) acquire knowledge by visiting digitalized libraries, and (3) know the world by browsing
on-line news. As technology develops, more information is created to an extent where it is infeasible for
a person to digest all the available content, let alone extract useful information from it. This motivates
the use of computational algorithms to automatically organize, search, summarize, and analyze these vast
amount of information. To this end, researchers, in the field of natural language processing (NLP), have
developed topic models for discovering the abstract topics that pervade a large and unstructured collection
of documents.

Topic models were inspired by the latent semantic indexing (LSI) [22], and its probabilistic variant,
probabilistic latent semantic analysis (pLSA) [23]. Pioneered by Blei et al. [26], the latent Dirichlet allocation
(LDA) extends the pLSI by employing Bayesian inference.

Computational Biology

It is the science of using biological data to develop algorithms or models to understand biological systems and 
relationships. Until recently, biologists did not have access to very large amounts of data. This data has now 
become commonplace, particularly in molecular biology and genomics. Researchers were able to develop 
analytical methods for interpreting biological information, but were unable to share them quickly among 
colleagues.

Computational biology has been used to help sequence the human genome, create accurate models of the human 
brain, and assist in modeling biological systems.

Bioinformatics began to develop in the early 1970s. It was considered the science of analyzing informatics 
processes of various biological systems. At this time, research in artificial intelligence was using network models of 
the human brain in order to generate new algorithms. This use of biological data to develop other fields pushed 
biological researchers to revisit the idea of using computers to evaluate and compare large data sets. By 1982, 
information was being shared among researchers through the use of punch cards. The amount of data being shared 
began to grow exponentially by the end of the 1980s. This required the development of new computational methods 
in order to quickly analyze and interpret relevant information.

Computational biology involves the development and application of data-analytical and theoretical 
methods, mathematical modeling and computational simulation techniques to the study of 
biological, ecological, behavioral, and social systems.
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Figure 1.1 – The intuitions behind latent Dirichlet allocation. Left: a bunch of corpus-wide topics that describe the
thematic structures for the collection of documents. Middle: a collection of documents, called text corpus, with
one particular document titled with “computational biology”. Right: the topic proportions and assignments of
word tokens for the computational biology document. A word token is an instance of a word in a document.
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To illustrate, as shown in Fig. 1.1, the LDA algorithm tries to find some number of “topics” that
provides the coarse-grained descriptions for the whole collection of documents. Each topic is a cluster of
words with probability distribution over these words. Additionally, the algorithm assumes that each
document is a mixture of corpus-wide topics and each word token is drawn from one of these topics. It
can also help us to find out the proportions of these topics and the assignments of word tokens for any
particular document in the text corpus.

1.1.2 A Network Approach to Topic Modeling

More recently, Gerlach, Peixoto, and Altmann obtained a fresh view of the problem of topic modeling by
relating it to the problem of finding communities in complex networks [28]. They represent the texts as a
bipartite network of documents and words. The edge between a document and a word in the network
represent the number of occurrences of the word in the document. The inferred clusterings of words are
the topics. For illustration, we compare the two methods to identify the topical structures in a text corpus
composed of 4 documents and 4 distinct words as shown in Fig. 1.2.
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Figure 1.2 – Comparison of two approaches to extract topics from collections of texts. The traditional topic
modeling views the text corpus as a word-document matrix, where the entries represent word frequencies. And
then the matrix is decomposed as a product of two matrices of smaller dimensions with the help of the latent
variable topic. The network approach represents texts as a network and infers communities in this network. The
nodes consist of documents and words, and edge thickness between them is proportional to the number of
occurrences of the word in the document, leading to a bipartite multigraph that is equivalent to the
word-document matrix in topic models. Figure adapted from [28].

They assume that the bipartite network of documents and words is generated by the stochastic block
model (SBM), which is originally proposed in the social sciences [6], and they also showed its mathematical
equivalence to the pLSI. The inference of the communities in such a bipartite network is based on the
methods proposed by Peixoto [12].
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1.2 Problem Statement and Objectives
The two different approaches to topic modeling discussed above are only based on word frequencies.
However, in fact, we can have additional information available about the documents. This information
can be metadata labels that accompany the text, such as tags, authors and dates; or external links that
navigate us to other articles like citations in the context of scientific papers.

(a) – A Wikipedia article with metadata tags and hyperlinks.

Metadata-tags

Hyperlink

Document-Word

(b) – modeling texts with auxiliary information using
multilayered network.

Figure 1.3 – Incorporating auxiliary information about documents as additional layers. In additional to
document-word bipartite network as the first layer, where the edges represent the word frequencies, we can
incorporate metadata tags and hyperlinks of Wikipedia articles as additional layers in a multilayered network.

For example, on Wikipedia, the largest multilingual online encyclopedia, its articles are often associated
with several metadata like category labels and the users who have edited the page. Additionally, the
Wikipedia article can also contain hyperlinks as shown in Fig. 1.3a.

With the additional information about documents available, the question naturally arises of how
to account for them when fitting the topic models. This first objective of this thesis is to incorporate
the auxiliary information about documents in the same network framework1. It is observed that the
word tokens, external links between documents, and other metadata labels about the documents are
different types of interactions between distinct objects. The main idea is to model them together by a
multilayered network as illustrated in Fig. 1.3b. The second objective of this thesis is then to investigate
whether incorporating further information available about documents can improve their classification.

1.3 Thesis Outline
Based on the above discussions, this thesis is organized as follows. In Chapter 2, we introduce the SBM
with its variants that are assumed generative processes for the formation of the document-word bipartite
network and the multilayered network considered above. Then, we review the necessary background

1In the literature, there exist several extensions for LDA to incorporate metadata about documents. For example, the author-topic
model proposed by Rosen-Zvi et al. [24] makes use of authorship information to improve topic modeling. However, in this thesis,
we only focus on the recent network approach to topic modeling.
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for Bayesian inference of the SBMs that will be used throughout. In Chapter 3, we we present the
approximation techniques for Bayesian inference of the SBMs. Specifically, we focus on the Metropolis-
Hastings algorithm, a variant in the class of Markov chain Monte Carlo (MCMC) methods, for inferring
the communities in the networks. In Chapter 4, we move on to descibe the issues of bias and variance
trade-off encountered in the Bayesian inference of the SBMs. We then discuss two estimators for the
partitions of networks that will be used later in this thesis. For the literature review used in this thesis,
we will follow Peixoto’s work on Bayesian inference of the SBMs [12, 13, 14, 16, 17, 18, 20].

Next, we show the mathematical equivalence between the pLSI in topic modeling and the SBM in
community detection in Chapter 5. And then show how the SBM framework introduced in Chapter 2 can
be applied to model texts with/without auxiliary information about documents. Chapter 6 presents our
main findings of this thesis. Specifically, we investigate the Wikipedia articles as a case study to show the
results of the extended models and how it improves the classification of documents as we incorporate
more auxiliary information about the documents.

Finally, Chapter 7 concludes the thesis by summarizing the main results and outline the possible
future research directions. To maintain the flow of this thesis, we describe some technical notes in
Appendix A.

4 1.3 Thesis Outline
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A principled approach to discover the hidden structure of networks is to formulate generative probabilistic
models, and then infer their parameters from the observed networks. If the desired structure is composed
of modules, a suitable choice for this task will be the stochastic block model (SBM). One of the advantages
of the statistical inference approach to community detection over other methods based on heuristics, e.g.
modularity method [9] and Louvain methods [8], is that it will not favor partitions that are not backed
up by the sufficient statistical significance. Hence, it will not lead us to the spurious partitions in random
networks. In this chapter, we review the SBM with its variants, and the inference framework to detect the
modular structure of networks that will be used throughout the thesis.

2.1 Classes of Stochastic Block Model
2.1.1 The Standard SBM

Consider a network with adjacency matrix A = {Aij} of size N and a partition of nodes b = {bi} into
B blocks, where bi = 1, . . . , B indicates the block membership of each node. In the simplest form, a
stochastic block model assumes that the probability of the existence of a link between nodes i and j
depends only on the their block memberships. For simplicity and without loss of generality, in what
follows we assume that the networks under consideration are multigraphs, i.e. Aij ∈N. Assume that the
edges are independently sampled from Poisson distributions, the likelihood for an observed network is

P(A|λ, b) = ∏
i<j

λ
Aij
bibj

e
−λbibj

Aij!
(2.1)

where λ = {λrs} is the B× B-matrix of group-to-group connectivity rates.
It is emphasized that, while the SBM can perfectly accommodate the usual “community structure”

pattern, i.e. there are more links between nodes inside the blocks than links between the groups and the
rest of the network (see Fig. 2.1b), it can equally describe a large variety of other connectivity patterns,
such bipartiteness, core-periphery and many others, as illustrated in Fig. 2.1. Hence, the SBM naturally
embed the definition of “community” by construction. However, the “community” is not only restricted

Chapter 2 Theoretical Framework 5



(a) The random network (b) The assortative (community) structure

(c) The bipartite structure (d) The core-periphery structure

(e) The ordered structure (f) The mixed pattern

Figure 2.1 – The network with planted structure with its corresponding edge probability matrix. The edge
probability matrix is visualized as a square matrix with entries for each edge-existence parameter between groups.

to the community (assortative) structures. In this sense, we instead use the word modules to refer to all
the connectivity patterns that the SBM can generate.

2.1.2 The Degree-Corrected SBM (DC-SBM)
The standard SBM in the above assumes that nodes that are in the sample group are statistically equivalent.
Namely, this implies that all nodes in the same groups have on average the same number of links, which
is potentially an unrealistic assumption given that many real networks often have very heterogeneous
degrees [1]. To allow for degree variability, Karrer and Newman proposed the degree-corrected SBM [7].
Specifically, a new set of parameters called degree propensity θi of each node i to establish links, so that the
likelihood becomes,

P(A|θ, λ, b) = ∏
i<j

(
θiθjλbibj

)Aij
e
−θiθjλbibj

Aij!
×∏

i

(
θ2

i λbibi
/2
)Aij/2 e−θ2

i λbibi
/2

(Aii/2)!
, (2.2)

6 2.1 Classes of Stochastic Block Model



where we also allow for self-loops, i.e. an edge that connects a vertex to itself. Within this formulation,
θi is proportional to i’s expected degree and can be different for nodes in the same group, allowing
this model to accommodate arbitrary degree sequences within groups. Since this modified model
achieves the decoupling the assortative structure from the degree, which are captured separately by the
parameters λ and θ, respectively, the degree variability of the network will not interfere the detection of
the communities.

In the degree-corrected SBM, the degrees of the nodes and the number of edges between groups
are fixed only on average. That is, if we sample networks according to Eqn. (2.2), these quantities can
fluctuate between the samples. We refer to such models as the canonical formulations of the stochastic
block models.

Remarks
It is noted that the above models generates undirected networks. It can be very easily modified to generate
directed networks, by making λrs an asymmetric matrix and adjusting the model likelihood accordingly [20].

2.2 Statistical Inference of the DC-SBM
Now that we have the probabilistic generative models to generate artificial networks with prescribed
structures, the problem of detecting the modular structure is thus mapped to a problem of statistical
inference from the observed networks.

From the frequentists’ perspective, a statistical model regards its parameters as unknown constants,
where the parameters need to be estimated by estimators that are usually obtained from methods such
as maximum likelihood estimation (MLE). A disadvantage of classical methods such as MLE is the
overfitting problem, where if the generative model has a large number of parameters that grows with the
observed data, the MLE approach will invariably incorporate a considerate amount of noise [3].

In contrary, a Bayesian model regards the unknown parameters as random variables, each of them having
a prior distribution of its own. Inference on these parameters are based on their posterior distributions
obtained from the Bayes’ rule, conditional on the observed data. An advantage of Bayesian inference over
the classical approach is that we can incorporate our prior belief of the parameters into the model, where
the priors can be based on previous experiences. Even when there is no prior information available, we
can let the priors to be “uninformative”, and let the data influence the posterior distributions. In this
thesis, the approach we adopt to infer modular structures is the Bayesian inference of the stochastic block
models, proposed by Peixoto [12].

2.2.1 Nonparametric Bayesian Inference of Partition

Instead of generating networks, we want to determine which partition b generated an observed network
A, assuming the network is generated by the DC-SBM. By evoking Bayes’ theorem, we can write the
posterior distribution of the partition as

P(b|A) =
P(A|b)P(b)

P(A)
, (2.3)

Chapter 2 Theoretical Framework 7



where
P(A|b) =

∫
P(A|θ, λ, b)P(θ|b)P(λ|b)dλdθ (2.4)

is the marginal likelihood integrated over the remaining model parameters, and

P(A) = ∑
b

P(A|b)P(b) (2.5)

is called the evidence, i.e. the total probability of the data under the model, which serves as a normalization
constant in Eqn. (2.3). In order to compute the marginal likelihood and the posterior of Eqn. (2.3), we
need to specify the priors P(θ|b), P(λ|b) and P(b), which encode our degree of a priori belief of the
plausibility of the model and its parameters.

Remarks
The model evidence P(A) can not be computed exactly since it involves a sum over all possible partitions.
However, since it is just a normalization constant, we will not need to determine it when optimizing or sampling
from the posterior, as we will see in Chapter 3.

2.2.1.a Determining the Prior Distributions P(θ|b), P(λ|b) and P(b)

The prior distributions are crucial in Bayesian statistics, since they affect the shape of the posterior
distributions and thus the inference results. In Bayesian statistical inference, the choice of priors can be
determined by past information, such as experiments [2]. However, this is not an applicable scenario
when considering networks, where the nodes are unique objects instead of coming from a population.
In the absence of such empirical prior information, we should try as much as possible to be guided by
reasonable assumptions about the data, rather than ad hoc choices. A central proposition we will be
using is the principle of maximum indifference about the model before we observe any data, which will
lead us to non-informative prior that assigns equal probabilities to all possibilities conditioned on specific
constraints [3].

In this section, we will discuss how to choose the prior distributions for the partitions P(θ|b), the
expected degrees P(λ|b), and the node propensities P(b) by obeying this principle.

The Prior for the Partition
We begin by choosing the prior for the partition b. The most direct uninformative prior is the flat
distribution, where all partitions into at most B = N communities are equally likely, that is

P(b) =
1

∑N
B=1

{
N
B

}
B!

(2.6)

where
{

N
B

}
are the Stirling number of the second kind that counts the number of ways to partition a

set of N elements into B indistinguishable non empty groups and B! recovers the distinguishability of
groups. However, it is observed that if N is sufficiently larger than B, there will be much more partitions
into B + 1 groups than there are into B groups. Therefore, the constant prior favors large models with
many groups and makes the posterior distribution proportional to the likelihood, which is equivalent to
the non-Bayesian approach.

8 2.2 Statistical Inference of the DC-SBM



Additionally, we might also want to be agnostic about the number of the groups and we can sample
this quantity from its own non-informative distribution P(B) = 1/N and then sample the partition given
the number of groups

P(b|B) = 1{
N
B

}
B!

(2.7)

since
{

N
B

}
B! is the number of ways to partition N nodes into B distinct groups.

Upon closer inspection, if we sample partitions from Eqn. (2.7), all group sizes will be approximately
the same, which is not a reasonable assumption. Hence, we need a non-informative hyperprior on the
group sizes n = {nr} where nr is the number of nodes in group r,

P(n|B) =
((

B
N

))−1
(2.8)

where (( n
m
))
= (n+m−1

m ) counts the number of possible histograms that have m counts falling in n bins
and is also known as multiset coefficient. However, this prior admits the existence of empty groups, which
is misleading. For example, if there is a network with 5 communities where one of them is empty, it
is equivalent to say the number of communities is 4. Therefore, in order to avoid dealing with empty
groups, we can simply exclude them using instead

P(n|B) =
(

N − 1
B− 1

)−1
, (2.9)

which is a uniform distribution over all possible histograms that have N counts falling in B non-empty
bins.

Conditioned on these randomly sampled sizes, we can then sample the partition using

P(b|n) = ∏r nr!
N!

, (2.10)

which is a maximum entropy distribution, where all possible partitions are equally likely, given the fixed
group sizes.

In summary, we built a hierarchical of priors capturing higher-order aspects of the model. The above
gives us finally the hierarchical prior for the partition

P(b) = P(b|n)P(n|B)P(B) = ∏r nr!
N!

(
N − 1
B− 1

)−1
N−1. (2.11)

As above, we went from a naive uninformative prior distribution for the partitions to a Bayesian
hierarchy with three levels, where we sample the number of groups, followed by group sizes, and finally
the partition. In each of the level, we used maximum entropy distributions constrained on parameters
that are sampled from their own distributions from a higher hierarchy. With this, we removed some
intrinsic assumptions about the model, i.e. number and sizes of groups, leading to making decision on
them until the data is observed. In this sense, the Bayesian approach outlined above is nonparametric,
where the order or dimension of the model, specifically, the number of groups B in this case, is the outcome
of the inference procedure [12].
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The Prior for the Group-to-Group Connections
Another set of parameters for the SBM is the expected degrees between nodes in one group and nodes
from different groups. By analogy to the above, we can start with the non-informative prior conditioned
on a global average λ̄, which is the expected density of the observed network. For a continuous random
variable x, the maximum entropy distribution with a constrained average x̄ is the exponential distribution
P(x) = e−x/x̄/x̄ [3]. Therefore, for λ, we have the following

P(λ|b) = ∏
r≤s

e−nrnsλrs/(1+δrs)λ̄nrns/ (1 + δrs) λ̄ (2.12)

with λ̄ = 2E/B(B + 1) determining the expected total number of edges 1.

The Prior for the Node Propensities
It is noticed that the parameters λrs and θi always appear in the form of multiple of each other in the
likelihood function Eqn. (2.2) of the DC-SBM, we can scale their values arbitrarily in this parametrization
∑i θiδbi ,r = 1. Then the interpretation will be: λrs is the expected number of edges between group r and s,
λrs = 〈ers〉, and θi is proportional to the expected degree of node i, θi = 〈ki〉 / ∑s λbi ,s. We can choose the
uninformative prior for the node propensities which ascribes the same probability to all possible choices,

P(θ|b) = ∏
r
(nr − 1)!δ

(
Σiθiδbi ,r − 1

)
. (2.13)

2.2.1.b Determining the Marginal Likelihood

Combining Eqn. (2.11), Eqn. (2.12), and Eqn. (2.13) and we can compute the integrated marginal
likelihood as

P(A|b) =
∫

P(A|λ, θ, b)P(λ|b)P(θ|b)dλdθ

=
λ̄E

(λ̄ + 1)E+B(B+1)/2
× ∏r<s ers! ∏r err!!

∏i<j Aij! ∏i Aii!!
×∏

i
ki!×∏

r

(nr − 1)!
(er + nr − 1)!

(2.14)

where ki = ∑j Aij is the degree of node i.

2.2.2 The Equivalence Between the Canonical and Microcanonical Ensembles
The integrated marginal likelihood of Eqn. (2.14) has a special interpretation: it is the joint likelihood of
a microcannonical model given by

P(A|b) = P(A|k, e, b)P(k|e, b)P(e|b) (2.15)

where

P(A|k, e, b) = ∏r<s ers! ∏r err!! ∏i ki!
∏i<j Aij! ∏i Aii!! ∏r er!!

, (2.16)

1It is noted that this uninformative formulation of Eqn. (2.12) also leads to its own problems as with the prior for the node
partition. But we postpone the issues to Sec. 2.3.
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P(k|e, b) = ∏
r

((
nr

er

))−1
, (2.17)

P(e|b) = λ̄E

(λ̄ + 1)E+B(B+1)/2
(2.18)

and e = {ers} is the matrix of edge counts between groups. As opposed to the “canonical” models
introduced previously, the microcanonical models assume that the model parameters correspond to
“hard constraints” that are strictly imposed on the ensemble. This implies that there is only one set of
parameter choices that is compatible with the network A and the partition b [20]. The generative process
of the microcanonical model of SBMs is illustrated in Fig. 2.2. Hence, the generative processes for the
parameters in the model can also be formulated via prior distributions. Fig. 2.2 also explains why the
approach is fully nonparametric [12].
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1
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1
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60

(a) – Edge counts, P(e|b). (b) – Degrees, P(k|e, b). (c) – Network, P(A|k, e, b).

Figure 2.2 – Sketch of the generative process of the microcanonical DC-SBM. Given a partition b, we first sample the edge
counts (a) between groups, which allows the edge counts to fluctuate between samples. And this is followed by
the degrees of the nodes (b) and then finally the network (c). Hence, the edge counts e between groups and the
degree sequence k are fixed without any fluctuations between samples. Adapted from Ref. [20].

Remarks
Additionally, as shown in [20], degree sequences generated by Eqn. (2.17) result in exponential degree
distributions, which are not quite as heterogeneous as what is often encountered in practice. A more refined
approach is to increase the Bayesian hierarchy as done for the prior of the node partition, but we postpone the
discussion in the Appendix A.1.1.

2.2.3 The Minimum Description Length Principle (MDL)

With the above microcanonical interpretation, we can view the posterior distribution in Eqn. (2.3) from
the perspective of information theory as follows. If a discrete random variable X has probability mass
function PX, the asymptotic amount of information necessary to describe it is ln PX by adopting an
optimal lossless coding scheme such as Huffman’s code is − log2 P(x). It is noted that we choose ln
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instead of log2 and thus the unit of measurements will be nats rather than bits, where the relationship is
1 nat = 1/ ln(2) bits. Hence, we can write the numerator of Eqn. (2.3) as

P(A|b)P(b) = P(A|k, e, b)P(k|e, b)P(e, b) = e−Σ , (2.19)

where the quantity

Σ = − ln P(A, k, e, b) (2.20)
= S + L (2.21)

is called description length of the data [4, 5] with

S = − ln P(A|e, k, b) = −E−∑
k

Nk ln k!− 1
2 ∑

rs
ers ln

(
ers

eres

)
(2.22)

being the number of nats required to describe the network if the model parameters are known, and

L = − ln P(k, e, b) = Eh
(

B(B + 1)
2E

)
+ N ln B− N ∑

k
pk ln pk (2.23)

being the amount of information required to describe the model parameters, where h(x) = (1 + x) ln(1 +
x)− x ln x is the binary entropy function and pk is the fraction of nodes with degree k. Hence, the optimal
network partition that maximizes the posterior distribution is the one that equivalently minimizes the
description length.

With this, it is observed that the Bayesian approach outlined for the degree-corrected SBM above
prevents overfitting problem in the following way: If the number of groups increases, it will decrease S
but simultaneously increase L. Hence, the latter becomes a penalty that disfavors overly complex models.

In this thesis, we will refer the above model as degree-corrected SBM with the Bayesian hierarchy of
non-informative priors and call this model as DC-SBM for brevity.

2.3 The Hierarchical SBM (hSBM)
Although the above MDL approach is generally protected against overfitting, it is still susceptible to
underfitting, i.e. when we mistake statistically significant structure for randomness, resulting in the
inference of an overly simplistic model. This happens whenever there is a large discrepancy between
our prior assumptions and what is observed in the data. If we revisit the the uninformative prior for
P(λ|b) in Eqn. (2.12), it put approximately equal weight on all allowed types of large-scale structures. As
argued before, this seems reasonable at first, since we should not bias our model before we observe the
data. However, the implication of this choice is that we expect a priori the structure of the network at the
aggregate group level, i.e. considering only the groups and the edges between them (not the individual
nodes), to be fully random.

In addition, the above DC-SBM with non-informative priors have an optimal number of inferred
blocks that scales as O(

√
N). That is, it fails to recognize modules if their sizes are smaller than a scale

that depends on the total number of nodes in the network, i.e. smaller blocks tend to be merged together
with neighboring groups. This boundary is known as the resolution limit [30].
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The solution to address the above issues, as proposed by Peixoto [16], is the hierarchical variants of
the SBM. The result of an inference of a SBM can be represented by a multigraph where the nodes are the
groups and edges are the corresponding edges of the nodes inside each block. The idea of the hierarchical
SBM is that the multigraph is again generated by a SBM and we can perform this step recursively until
the trivial partition is obtained as displayed in Fig. 2.3.

l =
0

l =
1

l =
2

l =
3

N
ested

m
odel
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netw
ork

N nodes
E edges

B0 nodes
E edges

B1 nodes
E edges

B2 nodes
E edges

Figure 2.3 – Sketch of the hierarchical SBM with three levels. A generated network is plotted at the bottom and the top-level
structure describes a core-periphery structure, which is then subdivided in the lower levels. Figure adapted
from [16]

More precisely, the hierarchical SBM replaces the uninformative prior in Eqn. (2.18) by a nested
sequence of SBMs, and the prior distribution for the matrix of edge counts el at level l ∈ {0, . . . , L} is

P(el |bl−1, el+1, bl) = ∏
r<s

((
nl

rnl
s

el+1
rs

))−1

∏
r

((
nl

r(nl
r + 1)/2

el+1
rs /2

))−1

, (2.24)

where Bl , bl denote the number of groups and the partition at level l, respectively.
The prior for the node partitions is again given by Eqn. (2.11),

P (bl) =
∏r nl

r!
Bl−1!

(
Bl−1 − 1

Bl − 1

)−1

B−1
l−1 . (2.25)

with B−1 = N. Hence, the joint probability of the observed network, edge counts, and the hierarchical
partition {bl} becomes

P (A, {el} , {bl} |L) = P (A|e1, b0) P (b0)
L

∏
l=1

P (el |bl−1, el+1, bl) P (bl) (2.26)
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where the boundary conditions are imposed by BL = 1 and P (bL) = 1.
The inference of the hierarchical SBM is done in the same manner as the noninformarive one, by

obtaining the posterior distribution of the hierarchical partition

P(bl) =
∏r nl

r!
Bl−1!

(
Bl−1 − 1

Bl − 1

)−1
B−1

l−1, (2.27)

and by analogy the description length is given by

Σ = − ln P (A| {el} , {bl})− ln P ({el} , {bl}) . (2.28)

In summary, the hierarchical SBM is a degree-corrected SBM which infers a hierarchy of nested SBMs
based on the statistical evidence of the given data in a completely non-parametric way, i.e. there are no
free parameters to choose beforehand. In what follows, we refer to this model as hSBM for brevity.

2.4 The SBM with Independent Layers
As mentioned in Chapter 1, word frequencies that create multiple edges between a document and one
word, hyperlinks between documents, and metadata tags between user-generated labels and documents
are independent and different types of interactions. These distinct types of interactions can be modeled
as layers of networks. The SBM can be generalized to model the generation of these kinds of network
structures as well [19]. We thus devote this section to formulate generative models of layered networks
in the same SBM framework.

We consider graphs that have a layered structure, so that the adjacency matrix in layer l ∈ [1, C] can
be written as Al

ij, corresponding to the presence of an edge between vertices i and j in layer l, where we
assume that Al

ij ∈N. It is assumed that the nodes are globally indexed, and a node can receive edges in
all layers in principle. The collapsed graph corresponds to the merging of all edges in a single layer, with
a resulting adjacency matrix Aij = ∑l Al

ij. In what follows, a specific layered graph is denoted as {Gl}
(with Gl = {Al

ij} being an individual layer), and the corresponding collapsed graph as Gc = {Aij}.
There are two important observations in the generative process. Firstly, we generate each layer as an

independent SBM, constrained only by the fact that the group memberships of the nodes are the same
across all layers. Furthermore, nodes are only allowed to belong to a subset of the layers, by including a
N × C layer membership matrix {zil}, where each binary entry zil ∈ [0, 1] determines whether node i
belongs to layer l. That is, if a node is not present in a given layer, it is forbidden to receive edges of that
type. We depict this generative process in Fig. 2.4.

Using the shorthand {{θ}l} = {{el
rs}} and {φ} = {bi}, the likelihood of the resulting layered block

model is then

P({Gl}|{{θ}l}, {φ}, {zil}) = ∏
l

P(Gl |{θ}l , {φ}), (2.29)

with P(Gl |{θ}l , {φ}) being the likelihood of the standard stochastic block model as discussed previously,
where Gl is the subgraph containing only the edges of layer l and the nodes specified by {zil}.

There remains one important modification of the above model, i.e. the degree-corrected assumption
as mentioned in Sec. 2.1.2. We incorporate this important aspect by specifying the layer-specific degree
sequence {kl

i}, where kl
i = ∑j Al

ij is the degree of node i in layer l, so that {{θ}l} = {{el
rs}, {kl

i}}. Hence,
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l = 2

l = 1

l = 2

l = 1

Figure 2.4 – SBM with independent layers. Left: The generated networks. Right: The model parameters specified for each
layer. In this example, the SBM with independent layers possess different large-scale structures in each layer,
where the first layer l = 1 is the bipartite structure and the second is the core-periphery structure. The important
assumptions are: (1) The layers are formed independently from each other; (2) The degree variability is different
across different layers.

it is important to notice that this model allows for degree variability across different layers, i.e. a node
that receives many edges in one layer may possess low degree in another. It is also noted that given the
layer-specific degree sequence, we do not need to the layer-membership matrix parameter in the standard
SBM case discussed above, since we can set the layer-specific degree of a node to zero so that this node
will inherently not receive any edge in that layer. Thus, the layer-specific degree sequence parameters
{kl

i} can replace the layer-membership matrix {zij}, which can be removed from Eq. 2.29 in this case.
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As described in Chapter 2, we can write the posterior distributions explicitly for the SBM and its
variants, but they are complex to characterize via analytic examination. We can not sample from or
maximize the posterior distributions in a direct manner. Indeed, it is also noticed the space we are
exploring is tremendous: As the number of nodes increase in a network, the number of all possible
partitions follows the Bell number, which grows much faster than the exponential function, as illustrated
in Fig. 3.1.
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Figure 3.1 – The number of partitions BN of a network
into communities grows faster than
exponentially with the network size N.

What we can do, however, is to adopt the Markov
Chain Monte Carlo (MCMC) methods. Given the pos-
terior distribution as our target distribution, the central
idea of MCMC algorithm is to construct a Markov chain
such that its equilibrium distribution is the posterior
distribution we want to sample from or maximize.

The chapter will be organized as follows. For the
standard SBM with non-informative prior introduced
in Chapter 2, we first discuss its MCMC algorithm in
detail. For other variants of the model, we describe
them in a summarized manner. Specifically, in Sec. 3.1,
we first discuss how to construct a Markov chain by
employing the Metropolis-Hastings algorithm [10, 11].
In particular, since we want the chain to take time as
less as possible to be equilibrated, we also discuss how

to choose a smart proposal distribution to make the algorithm more efficient. We then discuss how
to find the maximum of the posterior distribution via simulated annealing, so that we can obtain the
estimate that maximizes the posterior distribution. Next, although an equilibrium probability distribution
(the posterior distribution) that the MCMC converges to is irrespective of the initial starting state, the
efficiency and convergence rate of the MCMC algorithm still heavily depends on where the chain starts
its exploration. This will be our main focus in Sec. 3.3.
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3.1 Sampling From the Posterior
The essential idea to sample from the posterior distribution P(b|A) is to start with some arbitrary state
b0 and make move proposals b→ b′ with a probability P(b′|b), such that the equilibrium distribution
will be exactly P(b|A) after a sufficiently long time.

This process is guaranteed by constructing the Markov Chain that satisfies the following two conditions
1. Ergodicity: Every configuration is reachable from any other configurations with non-vanishing

probability;
2. Detailed balance: The moves are reversible and each observed partition must occur with probability

proportional to the proposal distribution 1.
Given any arbitrary proposal distribution, with the only condition that it satisfies the first condition,

the desired posterior distribution can be guaranteed to be reached eventually by employing the Metropolis-
Hasting algorithm [10, 11], indicating that we should accept the move b→ b′ according to the probability
a given by

a = min
(

1,
P (b′|A)

P(b|A)

P (b|b′)
P (b′|b)

)
, (3.1)

otherwise the attempted move is rejected. The ratio P (b|b′) /P (b′|b) enforces the reversibility property
T (b′|b) P(b|A) = T (b|b′) P (b′|A), where T (b′|b) is the final transition probabilities after incorporating
the acceptance criterion of Eqn. (3.1). Additionally, it is important to notice that when computing the ratio
P (b′|A) /P(b|A) in Eqn. (3.1), we do not need to determine the normalization constant P(A) appeared
in Eqn. (2.3) since it cancels out. And hence a can be determined exactly.

3.1.1 A Naive Approach: The Random Move Proposal
The simplest proposal that satisfies the above the two conditions is the fully random move proposal, i.e.
to attempt to move each vertex into one of the B blocks with equal probability. However, this proposal
can be very inefficient. Specifically, if the network have well-defined structures so that the node will
belong to very few of the B blocks with a non-zero probability, most random vertex moves will then be
rejected.

Additionally, despite the theoretical guarantees of the Metropolis-Hasting algorithm, a naive imple-
mentation of the algorithm may perform very badly. This is because it might take a very long time for the
asymptotic properties of the Markov chain to be realized. And thus the desired equilibrium distribution
is never reached in practical time. Hence, we devote next section to discuss the smart move proposal
proposed by Peixoto [13].

3.1.2 A Smart Move Proposal: Use the Currently-Inferred Structure
Given a node i with block membership s, the more efficient move proposal is defined as

p(r → s|t) = ets + ε

et + εB
, (3.2)

1Specifically, the probability of the observed partition is proportional to its description lengths.
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where t is the group label of a randomly chosen neighbor for node i and ε is a free parameter to enforce
the enforces ergodicity condition2.

i
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Figure 3.2 – Illustration of more efficient move proposal for a node. The move proposal is made by inspecting the
neighborhood of node i and randomly selecting one of neighbors j. Based on its group membership t = bj, the
edge counts between groups are inspected (right), and the move proposal bi = s is made with probability
proportional to ets. In this example, the probability of the attempted move bi → s is larger than either bi → r (no
movement) or bi → u, since ets > etr and ets > etu. Figure adapted from [13].

What Eqn. (3.2) means, as illustrated in Fig. 3.2, is essentially that the probability move for a node
from group r to s is proportional to the number of edge counts ets between the group s and t. That is,
instead of moving a node blindly, we utilize the currently inferred model parameters to choose the most
likely blocks to which the original node belongs.

The detailed balance condition can then be enforced using the Metropolis-Hastings criterion by the
following acceptance probability a

a = min

{
e−∆Σ ∑t pi

t p(s→ r|t)
∑t pi

t p(r → s|t) , 1

}
, (3.3)

where the e−∆Σ is the difference in the total description lengths between the attempted state and the
current state, pi

s is the fraction of neighbors of node i which belong to block s, p(t→ r|s) is computed
after the attempted move r → s, whereas p(r → s|t) is computed before the attempted move.

Remarks
It is emphasized that the move proposals of Eqn. (3.2) do not bias the partitions toward any specific kind of
mixing pattern, as depicted in Fig. 2.1. This is because they inspect the neighbors of a node only to access with
other groups their kinds are typically connected — which can be different from the the group assignment of the
original node.

3.2 Simulated Annealing For Global Maximization of the Posterior
Instead of sampling from the posterior distribution, we want to find the partition that maximizes of
the posterior distribution. In this case, we can introduce an “inverse temperature” parameter β in
the Eqn. (3.3). So, the final acceptance probability reads

a = min

{
e−β∆Σ ∑t pi

t p(s→ r|t)
∑t pi

t p(r → s|t) , 1

}
. (3.4)

2If we make ε→ ∞, we can recover the random move proposal.
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The so called inverse temperature β controls the likelihood of negative moves and can be used for
simulated annealing [35]. Simulated annealing increases the value of β step by step to increase the chance
to stay in a local optimum at the end, but leave local optima in the beginning. This can be done by
changing the value of β either slowly or abruptly after the chain has been sufficiently equilibrated. In this
thesis, we will consider the latter approach to improve the efficiency of the MCMC algorithms.

3.3 Efficient Inference: The Agglomerative Heuristics
Since the convergence of the MCMC algorithm depends heavily on the initial states, we devote this
section to discuss a more efficient approach to obtain a starting state that lies close to the mode of the
posterior.

→

Figure 3.3 – The initial state of the MCMC can be obtained with an agglomerative heuristic, where groups are merged together
using the same proposals described in Fig. 3.2. Figure adapted from [13].

The agglomerative heuristic approach presented in [13] is to perform one-dimensional optimization
(Fibonacci search [36]) on the number of group B, where for each value we obtain the best partition from
a larger partition with B′ > B.

The approach is composed of the following steps taken alternatively: (1) We attempt the moves
of Eqn. (3.2) until no improvement to the description lengths is observed. (2) We merge groups together,
achieving a smaller number of groups. Specifically, at first bracketing the minimum of Σ by finding
a triplet (B1, B2, B3) with B1 < B2 < B3 such that Σ|B=B1 > Σ|B=B2 < Σ|B=B3 . We can start with
B1 = 1, B3 = Bmax and choosing B2 = B3 − bB3 − B1cF, where bxcF is the largest Fibonacci number
x. This is repeated until the minimum is bracketed. After this, the intervals are progressed bisected
with B′2 = B′3 −

⌊
B′3 − B′1

⌋
F, where (B′1, B′3

) is the largest of the intervals (B1, B2) or (B2, B3). That is, we
progressively merge groups together, achieving a smaller number of groups. This step is done by treating
each group as a single node and using Eqn. (3.2) as a merge proposal, and selecting the ones that least
increase the total description lengths Σ (see Fig. 3.3).

3.4 The MCMC Algorithms for Other SBM Variants
We devote this section describe the MCMC algorithms for the hierarchical SBM introduced in Sec. 2.3.
The basic idea in this case is that we proceed in each step of the Markov chain by randomly choosing a
level l, and performing the proposals of Eqn. (3.2) on that level, as described in [20].

In this scenario, the posterior distribution of the hierarchical partition is

P({bl}|A) =
P(A, {bl})

P(A)
, (3.5)
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and this posterior can be factorized as

P({bl}|A) =
∏l P(el−1, bl |el)

P(A)

= ∏
l

P(bl |el−1, el) (3.6)

with per-level posteriors

P(bl |el , el+1) =
P(el |el+1, bl)P(bl)

P(el |el+1)
, (3.7)

where we assume e0 = A, and P(el |el+1) is a normalization constant.
Hence, a workable approach is to separately sample partitions at each level according to its individual

posterior, conditioned on the remaining levels, which are kept unchanged for the time being. If we sample
from each level in this manner we can guarantee ergodicity, and if the moves at the individual levels are
reversible, the overall distribution will correspond to the desired full posterior of Eq. 3.5.

Since the hierarchical levels are coupled, when moving a node at level l, we must ensure that this
does not invalidate the partition at level l + 1. Therefore, we must forbid node moves between groups
that are themselves at different groups in the next level3.

In more detail, we proceed as follows. At each individual level l, we perform a move proposal of
node i from its current group r to a new group s, according to a probability P(b(l)i = r → s) that we will
specify shortly.

We compute the difference in the log-likelihood ∆ ln Pl at that level, and we accept the move according
to the Metropolis-Hastings criterion, i.e. with a probability

a = min

{
1, e∆ ln Pl

P(b(l)i = s→ r)

P(b(l)i = r → s)

}
, (3.8)

where P(b(l)i = s→ r) is the probability of the reverse move being proposed. The log-likelihood difference
is computed as

∆ ln Pl = ln
P(b(l)i = s, bl \ b(l)i |el , el+1)

P(b(l)i = r, bl \ b(l)i |el , el+1)
, (3.9)

where bl \ b(l)i means the partition of the remaining nodes excluding node i.
In this case, instead of the random move proposal that leads to a long mixing time, a better approach

is to again inspect the current parameters of the model to provide a better guess of the posterior [20]. It
amounts to making move proposals according to

P(b(l)i = r → s) = ∑
t

P(t|i, l)
el

ts + ε

el
t + ε(Bl + 1)

, (3.10)

3This constraint does not break ergodicity, since all partitions in the upper levels will be allowed to change at some point.
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where P(t|i, l) = ∑j A(l)
ij δ(b(l)j , t)/k(l)i is the fraction of neighbors of node i in level l that belong to group

t, and ε > 0 is an arbitrary parameter that enforces ergodicity, but with no other significant impact in the
algorithm, provided it is sufficiently small.

Furthermore, these proposals can be generated efficiently, simply by
1. sampling a random neighbor j of node i, and inspecting its group membership t = bj, and then
2. with probability ε(Bl + 1)/(et + ε(Bl + 1)) sampling a fully random group s (which can be a new

group),
3. or otherwise, sampling a group label s with a probability proportional to the number of edges

leading to it from group t, ets.
While the above algorithm serves to sample from the posterior distribution of Eq. 3.5, it can be easily

modified to find its maximum by introducing an “inverse-temperature” parameter β in Eq. 3.8 via the
replacement ∆ ln Pl → β∆ ln Pl . By making β→ ∞ the algorithm is turned into a greedy heuristic that, if
repeated many times, yields a reliable estimate of the maximum.

The division of the network into layers does not alter these algorithms in any significant way. We just
need a book-keeping of the layer membership of each edge at each iteration. We refer to [19] for further
details.

Remarks
The MCMC algorithm described in this chapter, for all model variants described, is implemented in the
graph-tool library [21], freely available under the GPL license at http://graph-tool.skewed.de.
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Given the posterior distribution P(b′|A), we can get estimates of inferred partitions in two ways.
Firstly, we can maximize the posterior distribution Eqn. (2.3), which is equivalent to employing the
MDL principle. Alternatively, we can collect a large number of samples after the Markov Chain has been
equilibrated and then obtain the marginal distribution for each node, i.e. the probability that each node
belongs to a given group. From this approach, we can obtain a “point estimate” for the partition by taking
the maximum value for each node, i.e. the group membership with the largest probability. Following the
reference [12], we devote this section by discussing the two estimators of partition. We will call the first
as the maximum a posteriori (MAP) estimator and the second as the marginal estimator.

To see which estimator is more suitable, we need first define a loss function that compares the estimate
b̂ of the partition to the true partition that generated the data b∗. If we choose to be very strict, for example,
we may reject any partition that is strictly different from b∗ on equal measure, using the indicator function

∆(b̂, b∗) = ∏
i

δb̂i ,b∗i
, (4.1)

so that ∆(b̂, b∗) = 1 only if b̂ = b∗, otherwise ∆(b̂, b∗) = 0. If the observed data A and parameters b are
truly sampled from the model and priors, respectively, the best assessment we can make for b∗ is given
by the posterior distribution P(b|A). Therefore, the average of the indicator over the posterior is given by

∆̄(b̂) = ∑
b

∆(b̂, b)P(b|A). (4.2)

4.1 The Maximum a Posteriori (MAP) Estimator of Partitions
If we maximize ∆̄(b̂) with respect to b̂, in Eqn. (4.2) we can obtain the MAP estimator

b̂ = argmax
b

P(b|A). (4.3)

However, using this estimator is arguably overly optimistic since the posterior distribution is complex
and we are unlikely to find the true partition with perfect accuracy in most cases.

4.2 The Marginal Estimator of Partitions
Alternatively, we can consider the following overlap function
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d(b̂, b∗) =
1
N ∑

i
δb̂i ,b∗i

, (4.4)

which measures the fraction of nodes that are correctly classified. If we maximize now the average of the
overlap over the posterior distribution

d̄(b̂) = ∑
b

d(b̂, b)P(b|A), (4.5)

we obtain the marginal estimator

b̂i = argmax
r

πi(r), (4.6)

where

πi(r) = ∑
b\bi

P(bi = r, b \ bi|A) (4.7)

is the marginal distribution of the group membership of node i, summed over all remaining nodes.

Remarks
From the above, the marginal estimator is notably different from the MAP estimator since it leverages information
from the entire posterior distribution to infer the partition that is responsible for the formation of the observed
network. It is expected that

1. If the posterior is tightly concentrated around its maximum, both estimators will yield compatible
answers. In this situation the structure in the data is clear, and both estimators agree.

2. Otherwise, if the posterior possesses multiple peaks, the multiplicity of local maxima can be just a
reflection of the randomness in the data, and the marginal estimator will be able to average over them
and provide better accuracy [33].

4.3 An Example Application
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Figure 4.1 – Zachary’s karate club network.

To illustrate the difference between the MAP estimator and the
marginal estimator for the partition of a network, consider a
well-known Zachary’s karate club network [34] as a concrete
example. As shown in Fig. 4.1, the 34 nodes in this network
represent members of a karate club and a link between two
members represent the interaction outside the club. The ob-
served community structure1 corresponds to a conflict between
the administrator (node 0) and the instructor (node 33), ulti-
mately leading to the split of the club into two factions. In the network science literature, this network
serves as a common test to judge the quality of a community detection algorithm based on whether it
can recover the observed partition.

1The observed partition of a network is often called “ground-truth” communities in the network science literature.
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If we analyze this network with the DC-SBM, we can obtain the following three partitions with high
posterior probabilities
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(a) – b0, Σ = 323 bits
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(b) – b1, Σ = 327.5 bits.
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(c) – b2, Σ = 329.3 bits
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(d) – Marginal probabilities of
group memberships.
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Figure 4.2 – Posterior distribution of partitions of Zachary’s karate club network using the degree-corrected
SBM. Panels (a) to (c) show three modes of the distribution and their respective description lengths (measured
in bits); (d) Marginal probabilities of group memberships of the Zachary’s karate club network, according to the
degree-corrected SBM. The pie fractions on each node represent the probability of being in community associated
with the respective color. (e) Marginal posterior distribution of the number of groups B; (f) 2D projection of the
posterior distribution, visualized using multi-dimensional scaling method (see Appendix A.1.2).

• b0 in Fig. 4.2a: a trivial B = 1 partition. This indicates that the karate club network has no community
structures.

• b1 in Fig. 4.2b: a “leader-follower” division into B = 2 fractions that separate the administrator
and instructor together with two close allies from the rest of the network. This is an example of
“core-periphery” structure that can be captured by SBM as described in Chapter 2.

• b2 in Fig. 4.2c: a B = 2 division into the groups that match the observed communities exactly. This
is an example that SBM discovers the assortative structures in the network.

Since b0 occurs with highest posterior probability, this MAP estimator indicates the most likely
explanation of this network is a fully random graph. On the other hand, if we obtain the marginal
probabilities for the block memberships of each node as shown in Fig. 4.2d, we conclude that the marginal
estimator for the partition of this network is still the trivial partition. Therefore, the over-reliance on this
network to judge the quality of community detection methods is highly questionable.
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As depicted in Fig. 4.2e, however, if we inspect the posterior distribution more closely, the sum of
the posterior probabilities of other partitions into B > 1 groups is approximately equal to 0.5. Hence,
if we consider all B > 1 partitions collectively, we cannot completely discard the possibility that the
network posses some group structure. As shown in Fig. 4.2f, the posterior distribution of partitions
reveals a multimodal structure clustered around the above three partitions. Hence, each of them might
be a possible explanation for the Zachary’s karate club network.

4.4 Discussion
The scenarios encountered for the karate club network illustrates the problem of bias-variance tradeoff in
statistics and machine learning:

• More bias, less variance.
If we choose to use a singe partition as a unique representation of the network, we must invariably
bias our result toward any of the above three most likely partitions, discarding the remaining ones
at some loss of useful information.

• Less bias, more variance.
Otherwise, if we choose to eliminate the bias by incorporating the entire posterior distribution in
our representation, it will incorporate a larger variance. That is, it will simultaneously encompass
diverging explanations of the data, leaving us without an unambiguous and clear interpretation.

As discussed above, the only situation where this trade-off is not required is when the model is a
perfect fit to the data, such that the posterior is tightly peaked around a single partition.

In view of the above, it might be argued that the marginal estimator for the partition should be
generally preferred over MAP estimator. However, the situation is more complicated when the model
is misspecified, that is, we use the model to fit the data that is in fact not generated from the assumed
model. In this case, multiple peaks of the posterior distribution can point to very different but all
statistically significant partitions. The partitions corresponding to these different peaks serve as alternative
explanations for the data that must be accepted on same footing, according to their posterior probability.
The marginal estimator will in general mix the properties of all peaks into a consensus classification that
is not representative of any single hypothesis, whereas the MAP estimator will concentrate only on the
most likely one.

The final decision on which approach to employ replies on the computational resources available
and the actual objective. Generally, if the goal is to make a precise statement about the data, and the
computational resources are limited, the MAP estimator tends to be more adequate. In contrary, when
computational resources are ample, the marginal estimator will be more suitable if the objective is to
generalize from observations and make predictions.

In this thesis, we will use both estimators for the partition of documents in all of the networks of
interests when assessing the partition similarities between different models.
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5.1 Connecting Topic Models and Community Detection
We devote this section to present the equivalence between the probabilistic latent semantic indexing
(pLSI) from topic modelling and the stochastic block models from community detection, as shown
in [28].
pLSI
Probabilistic Latent Semantic Indexing (pLSI) is defined as a generative process [23] that generates a
corpus of D documents as follows.

• For each topic r = 1, 2, . . . , K
– Draw the word-topic distribution φr

w (frequencies of words conditioned on the topic r)
• For each document d = 1, 2, . . . , D

– Draw the topic-document distribution θdr (frequencies of topics conditioned on the doc d)
– For each work-token id = 1, 2, . . . , kd in document d

∗ Draw a topic rid from the categorical distribution θdr

∗ Draw a word-type wid from the categorical distribution φrid
w

If we assume that the number of words kd in a document d is Poisson-distributed with parameter
ηd, and denote nr

dw as the number of frequencies of word w of topic r in document d, the probability of
generating a corpus composed of D documents is

P(n|η, θ, φ) = ∏
d

η
kd
d e−ηd ∏

wr

(φrwθdr)
nr

dw

nr
dw!

. (5.1)

We denote matrices by bold-face symbols, e.g. θ = {θr
d} with d = 1, . . . , D and r = 1, . . . , K where θdr

is an individual entry, thus the notation θd refers to the vector {θdr} with fixed d and r = 1, . . . , K.
Another SBM variant: Group overlaps
Another way we can change the internal structure of the SBM is to allow the groups to overlap. That is, a
node can belong to more than one group simultaneously. Following the reference [27], we can write the
likelihood function for SBMs with overlapping groups as

P(A|κ, λ) = ∏
i<j

e−λij λ
Aij
ij

Aij!
∏

i

e−λii/2 (λii/2)Aii/2

Aii/2!
, (5.2)

with
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λij = ∑
rs

κirωrsκjs, (5.3)

where κir is the probability that node i is sampled from group r and λrs is the expected number of edges
between group r and group s.

The Equivalence between pLSI and SBM with group overlaps
To show the equivalence between the pLSI and the SBM with overlapping groups, we write the token
probabilities in Eqn. (5.1) in a symmetric fashion as

φrwθdr = ηwθdrφ′wr, (5.4)

where φ′wr ≡ φrw/ ∑s φsw is the probability that the word w belongs to topic r, and ηw ≡ ∑s φsw is the
overall propensity with which the word w is chosen across all topics. Hence, the likelihood of Eqn. (5.1)
becomes

P(n|η, φ′, θ) = ∏
dwr

e−λr
dw(λr

dw)
nr

dw

nr
dw!

, (5.5)

with λr
dw = ηdηwθdrφ′wr. Further, if we choose to view the frequencies ndw as the entries of the adjacency

matrix of a bipartite network of documents and words, the likelihood of Eqn. (5.5) is equivalent to the
likelihood of Eqn. (5.2) of the SBM, if we assume that each document belongs to its own specific group,
κir = δir, with i = 1, . . . , D for document-nodes, and by re-writing λr

dw = ωdrκrw.

Remarks
From the above, it is concluded that the SBM of Eqn. (5.2) is a generalization of pLSI. One advantage of this
formulation is that it allows to not only cluster the words into topics but also to cluster the documents into
groups. So pLSI is a special case of when the documents are not clustered.

5.2 Parallelism Between Topic Models and Community Detection
Methods
Latent Dirichlet Allocation (LDA)
For an unknown text corpus, if we assume it is generated by the pLSI, we can simply maximize the
likelihood Eqn. (5.1) to obtain the best estimators η, θ, and φ, which describe the topical structure of the
corpus. However, this maximum likelihood estimators will invariably incorporate a considerable amount
of noise since the number of parameters in the model grow with the number of documents, words, and
topics. To lessen the issue of overfitting, the approach proposed by [26] is employed by putting Dirichlet
prior distributions Dd (θd|αd) and Dr (φr|βr) with hyperparameters α and β for the probabilities θ and
φ above.

Modelling Documents and Words Using the hSBM
If we view the text corpus as a bipartite network generated by the SBM, we can use the nonparametric
Bayesian approach that models the network as a hierarchy of SBMs in Chapter 2.
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Since the bipartite network of documents and words, where they belong to different groups, is a
special case of an arbitrary multigraphs generated by the hSBM, we can use the model as it is, as it will
“learn” the bipartite structure during inference. However, a more consistent approach for text is to include
this information in the prior, since we should not have to infer what we already know. Hence, we simply
modify the model by replacing the prior for the partition at each level of the hierarchy by

P (bl) = Pw (bw
l ) Pd

(
bd

l

)
(5.6)

In this manner, by construction, words and documents will never be placed together in the same
group.

Comparison between LDA and hSBM to topic modeling
We devote this section to summarize the advantages of the network approach (hSBM) over LDA, as
shown in [28].

• Since the hSBM is based on nonparametric Bayesian inference, the number of topics is discovered
automatically.

• Since the priors are hierarchical, the thematic structures can be discovered on many scales of
resolution. In addition, the documents themselves can also clustered into hierarchical categories.

• If we perform both methods on artificial corpora sampled from LDA, the hSBM performs better
in terms of description lengths. The improvement of the hSBM over LDA in a LDA-generated
corpus is counterintuitive because, for sufficient data, we expect the true model to provide a better
description for it.

Summary
Now, we have discussed the two different approaches – the traditional topic modeling technique (pLSI
and LDA) and the network approach (SBM and hSBM) – to solve the problem of topic modeling. We
summarize their relationship using Fig. 5.1.
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Figure 5.1 – Parallelism between topic models and community detection methods. The pLSI and SBM are
mathematically equivalent as shown in Sec. 5.1 and thus methods from community detection (described
in Chapter 1) can be used as alternatives to traditional topic models (LDA).
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5.3 Modelling Texts With Auxiliary Information Using the SBM with
Independent Layers
In this section, we summarize the two important assumptions in modeling the texts with auxiliary
information by the SBM with independent layers as described in Sec. 2.4.

• Independent layers: The word tokens, hyperlinks between documents, and metadata tags are
different types of interactions. We assume that there are no relationships among these different
types of interactions.

• Degree correction: One document that receive many words does not necessarily mean that it will
possess many hyperlinks or metadata tags.

5.4 Evaluations on Topic Models: Document Clustering
As mentioned above, one of the advantages of the network approach to topic modeling is that we can
obtain the clustering of documents automatically. Given two partitions of documents, a natural question
arises of how to compare the similarity between the two clusterings. The normalized mutual information
(NMI) is such an information theoretic measure used for clustering comparison [37].

Let S be a set of N labels, then a clustering U on S is a way of partitioning S into non-overlap subsets
{U1, U2, . . . , UR}, where ∪R

i=1Ui = S and Ui ∩ Uj = ∅ for i 6= j. The information for the overlap
between two partitions U = {U1, U2, . . . , UR} and V = {V1, V2, . . . , VC} can be summarized in the R× C
contingency table M =

[
nij
]i=1,...,R

j=1,...,C, as shown in 5.1, where nij is the number of objects that are in common
for clusters Ui and Vj.

U\V V1 V2 . . . VC Sums
U1 n11 n12 . . . n1C a1
U2 n21 n22 . . . n2C a2
... ... ... . . . ... ...

UR nR1 nR2 . . . nRC aR
Sums b1 b2 . . . bC ∑ij nij = N

Table 5.1 – The contingency table of two partitions of a set with N elements, where nij =
∣∣∣Ui ∩Vj

∣∣∣
.

If we consider a partition as a distribution (probability of one node falling into one community),
then given two partitions U and V, their entropies H(U), joint entropy H(U, V), conditional entropies
H(U|V) and mutual information (MI) I(U, V) can be calculated naturally using the following formulas

H(U) = −
R

∑
i=1

ai
N

log
ai
N

, (5.7)

H(U, V) = −
R

∑
i=1

C

∑
j=1

nij

N
log

nij

N
, (5.8)

H(U|V) = −
R

∑
i=1

C

∑
j=1

nij

N
log

nij/N
bj/N

, (5.9)
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I(U, V) =
R

∑
i=1

C

∑
j=1

nij

N
log

nij/N
aibj/N2 . (5.10)

It is noted that the MI is to quantify how much knowing V reduces the uncertainty about V, and vice
versa. Then, the NMI is defined as

NMIsum =
2I(U, V)

H(U) + H(V)
(5.11)

The NMI is normalized in the sense that the it is bounded between the minimum 0 when the labels
are totally different in U and V, and the maximum 1 when U and V are identical. It is pointed out that
there are several other variants of the NMI measure if we choose the different normalized constants
appeared in the denominator of Eqn. (5.11). However, if we want compare partition similarities between
different observed clusterings, the ranking of similarity values will not be affected by these choices of
NMI measures.
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This chapter summarizes the numerical results of making use of auxiliary information that is available
on Wikipedia for the application of the SBM framework to Wikipedia articles. In particular, we incorporate
the hyperlinks, category labels, and the text content. There are three main results present in this thesis.
Firstly, we incorporate texts with additional information about documents as multilayered network and
visualize the inferred result in an informative way. Then, we perform a convergence analysis of the MCMC
algorithms. Finally, we conclude this chapter by assessing whether incorporating more information about
documents can help improve the their classification.

6.1 Case Study: The Wikipedia Articles
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Figure 6.1 – Sketch of the preprocessing pipeline for
the Wikipedia articles. The folder
structure (left) organizes each Wikipedia
article on 5 different levels of granularity,
see example article (middle): raw, raw texts
with specified categories, cleaned text,
tokens, and counts.

The Wikipedia is a multilingual online encyclopedia
edited by volunteers. In this thesis, we only consider
the English version of the Wikipedia. It is noted that,
since the Wikipedia is dynamic, the frozen version of
the English Wikipedia dump at 1st April, 2019 is used
for reproducible research.

6.1.1 Text Preprocessing for Wikipedia Articles
We devote this section briefly describe all the data pro-
cessing steps we took to obtain the corpus from the raw
data (Fig. 6.1). The processing yields data for articles
on 5 different levels of granularity:

• Raw data: We download the whole English
Wikipedia.

• Raw data (subset): We further extract the articles
based on its category labels.

• Cleaned Text: We remove all unwanted characters,
e.g. LATEXcodes, punctuations.
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• Token data: We tokenize1 and lemmatize2 the text data using the NLTK package [25].
• Count data: We count the number of occurrences of each word-type. This yields a list of tuples
(w, nw), where w is the word type and nw is the number of occurrences.

Remarks
When subsetting the data in the above pipeline, we use an additional important filtering. That is, we exclude
the Wikipedia article served as a navigation page to other articles. For example, we exclude the page with the
title being “List of mathematical functions”.

6.1.2 Datasets Summary

The above preprocessing pipeline provides a generic approach of how to extract articles from categories
of our interests. In this Chapter, we consider articles from three categories, physics, mathematics and
biology.

The observed hyperlink network for documents from three categories is shown in Fig. 6.2. It is shown
that the hyperlink network exhibits the prescribed community structure, with a few exceptions. For
instance, the yellow node colored with a red circle represents a Wikipedia page titled “computational
anatomy” from the biology category. It is expected that, if we perform community detection on this
hyperlink network, the algorithm is not supposed to categorizes as a biology article since it has more
links connected to mathematics category. This is motivates the question how informative the hyperlinks
between documents can improve the clustering of documents.

Mathematics

Biology

Physics

Figure 6.2 – The observed hyperlink network D1
for the articles considered in this
chapter.

D1 D2 D3 D4 D5

Number of nodes
Document nodes 138 138 138 138 138
Word types - 16,378 16,378 16,378 16,378
Labels - - - 138 138

Number of edges
Word tokens - 351,710 351,710 351,710 351,710
Hyperlinks 341 - 341 - 341
Metadata tags - - - 138 138

Table 6.1 – Summary of the datasets used in this chapter, showing the
number of document nodes, word nodes (unique word tokens),
tag nodes, word tokens, hyperlinks and tag edges.

Based on the auxiliary information that is available on Wikipedia, we can construct five different
networks incorporating different amount information available of documents, as illustrated in Fig. 6.3.

1Tokenization: split the text into tokens (words in our case).
2Lemmatization: convert the words into a common base form.
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Additionally, as detailed in Table 6.1, we summarize the datasets considered in this Chapter by showing
the number of documents, distinct words, category nodes, word tokens, hyperlinks, and metadata tags
across different networks. The average text length is around 2, 500 words.

Document node

Word node

Tag node

D1 D2

Hyperlink

Document-Word

D3

Metadata-tags

Document-Word

D4

Metadata-tags

Hyperlink

Document-Word

D5

Figure 6.3 – The five possible networks we can construct from the Wikipedia datasets. D1 : The hyperlink network,
where a node represents a document and an edges represents the hyperlink between two documents. D2 : The
bipartite network of documents and words, where the edges are word tokens. D3 : The multilayered network,
where the first layer is the document-word network and second layer is the hyperlink network. D4 : The
multilayer network where we incorporate the category labels about documents in the additional layer. D5 : The
three-layer network incorporating all information available about documents.

6.2 Visualization of the Inference Results
In this section, we perform the algorithm based on the agglomerative heuristics introduced in Sec. 3.3 in
the multilayered network D2, where the first layer corresponds to the bipartite network of documents
and nodes and second one is the hyperlink network between documents.

We visualize the inference results by showing the bipartite network of documents and words. For
making the visualization clearer, we uniformly randomly plot 1, 000 of two types of edges – hyperlinks
and word tokens, as shown in Fig. 6.4. Fig. 6.4 shows the hierarchical clustering of documents and words.
The model splits the network into groups on different levels, organized as a hierarchical tree.

On the lowest level of the hierarchy, there are 5 document groups. For words, the lowest level in the
hierarchy splits nodes into 59 separate groups. We find that, for example, there are groups representing
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Figure 6.4 – The inference result from layered network D3. Articles from three categories (mathematics, physics, and
biology). The first hierarchical level reflects bipartite nature of the network with document nodes (left) and word
nodes (right). The grouping on the second hierarchical level is indicated by solid lines. We show examples for
nodes that belong to each group on this second hierarchical level: For word nodes, we show the most frequent
words; for document nodes, we show five randomly selected articles.

words belonging to biology (e.g. molecule, cell, and population) and mathematics (e.g. calculus, graph
and logic), and the group representing function words (the, it, or this).

While we considered articles from three different categories, the second level in the hierarchy separates
documents into only two groups corresponding to articles about biology and articles on physics and
mathematics. For words, we summarizes the three topics (word groups) with the most frequent words
in Table 6.2.

Topics Top Words
Topic 1 the, of, in, a, to, be, and, for, that, it
Topic 2 field, system, time, number, state,

theory, model, science, physic, problem
Topic 3 biology, life, size, human, evolution,

biological, chemical, specie, environment, project

Table 6.2 – Topical analysis of the learned hSBM on the D3 network, which displays the three topics with the top words at the
second level of the hierarchy shown in Fig. 6.4.

In summary, the model enables the identification of structural patterns in text, allowing for the
identification of patterns in multiple scales of resolution for both documents and words.
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6.3 Convergence Analysis of the MCMC Algorithms
The MCMC algorithm based on the agglomerative heuristics above for the Bayesian inference of the
parameters is stochastic, and thus there is no guarantee that that two runs of the algorithm will yield the
same result. As discussed in Chapter 5, this may be due to the fact that there are alternative partitions
with similar probabilities, or that the optimum is difficult to find. Because of this, the approach Gerlach,
Peixoto, and Altmann [28] adopted is to run the algorithm based on the agglomerative heuristics many
times, and select the partition with the minimum description length.

In order to assess partition similarity of documents among different networks, this motivates a more
careful analysis of the computational cost and convergence of the SBM fit. To this end, for each network
considered, we compute the description lengths obtained after a growing number of MCMC iterations
for different random choices of initial states. As discussed in Chapter 2, as long as the chain is ergodic, it
will eventually converge to the desired posterior distribution. However, starting from a random partition
may not be the best option, since it may take a long time for the chain to equilibrate. Hence, the approach
we adopt in this thesis is to obtain multiple initial states by independently running the algorithm based
on agglomerative heuristics multiple times. As such, the algorithm based on agglomerative heuristic is
used as a privileged starting point for the Markov chain instead of as an approximate inference tool on its
own [13].
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Figure 6.5 – The convergence of total description lengths for different networks. For each network, the annealing was
performed at 104 sweeps by switching the inverse temperature from β = 1 to β→ ∞. During each sweep, a move
attempt is made for each node.

After obtaining such starting states, we perform the MCMC algorithm for additional large enough
iterations to see whether the description lengths converge or not. Specifically, for each run of the algorithm,
we first sufficiently equilibrate the chain at the inverse temperature parameter β = 1, followed by abruptly
cooling the chain via β→ ∞. Then, we report the average and standard deviation of description lengths
for multiple runs over the MCMC iterations as shown in Fig. 6.5. This shows that the description lengths
decay with the MCMC iterations. Importantly, there is a drastic decrease after the abrupt cooling of
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the chain, indicating that the annealing is important if we want to find the partition that minimizes the
description length. In addition, although the standard deviations are also reduced, there is still some
fluctuations in the end. This confirms that there exist alternative partitions with similar probabilities.
Finally, for each run, we pick the state with the minimum description lengths observed throughout the
full run.

The convergence analysis of the MCMC algorithm tells us that we should be open to the possibility
that there will be more than one fit of the SBM with similar posterior probabilities. In such situations, we
should instead sample partitions from the posterior distribution, instead of simply finding its maximum.
We can then compute quantities that are averaged over the different model fits, weighted according to
their posterior probabilities.

For example, we can obtain the marginal distribution of the number of groups over hierarchies as
displayed in Fig. 6.7.
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Figure 6.7 – The marginal distribution of the number of groups Bj over the hierarchies j (left to right,
j = 0, . . . , 3) for different networks D1, . . . ,D5 (top to down).

It is observed that the number of groups decrease drastically as we incorporate more information
about the documents, indicating that adding more information in the models leads to a more definite
answer to the network structures.

6.4 Comparison of Partition Similarities of Documents
6.4.1 Document Clustering I: Independent Runs of the MCMC Algorithms

After 20 independent runs of the MCMC algorithms for each dataset, we can obtain the partition in the
region β → ∞ shown in Fig. 6.5 and then compare the partition similarities of documents within and
between different models. For that, we use the first level of the hierarchy (i.e., the one with the minimum
number of documents), compute the NMI between the two different partitions, and then calculate the
average and standard deviations of NMI values as shown in Fig. 6.8.
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(a) – The average and standard deviation of NMI values compared to the
Wikipedia labels.
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Figure 6.8 – The partition similarities of documents.

In Fig. 6.8a, compared to the Wikipedia labels, there is a slight increase of the NMI values as we
incorporate more information in the model. And if we incorporate all the information available in the
model, it is observed that the fluctuations also decrease.
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As shown in Fig. 6.8b, the variation of the NMI within each model (i.e., how similar are two runs
of the same model) is included in the diagonal of these tables. The values are comparable to the other
values of the table, indicating that the variation of the different partitions found by the same model show
a comparable diversity of results. Additionally, the models that contain words are more similar with
each other than the model only containing the documents. Hence, the word tokens are dominating in the
inference.

6.4.2 Document Clustering II: The Marginal Estimator of Partitions

Another possible estimate for the partition can be obtained via the Bayesian model averaging as discussed
in Chapter 4. Specifically, after equilibrating the chains sufficiently, we can then collect a large number of
samples from the posterior distribution in each model and obtaining the marginal distribution for each
node, i.e. the probability that each node belongs to a given group. From this, we can obtain a “point
estimate” for the partition by taking the maximum value for each node, i.e. the group membership with
the largest probability.

Mathematics

Biology

Physics

(a) – The observed hyperlink network. (b) – D1, B = 5, NMI = 0.62

(c) – D2, B = 5, NMI = 0.67 (d) – D3, B = 4, NMI = 0.71

Figure 6.9 – The observed hyperlink network and the most likely inferred partition of documents for the
networks D1,D2,D3. In the caption below each figure, we also include the number of inferred groups for the
documents and NMI value compared to the Wikipedia labels.
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In this way, as discussed previously, the obtained partitions may not be the one that minimizes the
description lengths. And the advantage of this approach is that it leverages the consensus over many
partitions.

We compare the obtained partition with the Wikipedia labels as depicted in Fig. 6.9. We can see that
in this case, there is also an increase in the NMI values, which confirms the conjecture that the more
information we incorporate in the models, the more similar it is to the “ground-truth” labels.
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7.1 Summary and Conclusion
The first part of the thesis introduces the main ideas of the problem of topic modeling, including traditional
approaches, that represent the texts as a word-document matrix, and the network approach that considers
the collection of documents as a network. We illustrate the task of topic modeling by a simple example
and make a clear statement of the research problem and outline the structure of this thesis.

Chapter 2 summarizes the mathematical models (SBM and its variants) that are responsible for the
formation of the networks containing words, documents, and auxiliary information about documents.
Additionally, we describe the Bayesian inference of the SBM in SBM in detail in Chapter 2. Since the
posterior distribution of the partition of networks is not simple enough to sample from or locating the
maximum, we make a detailed literature review on the approximate inference method – Monte Carlo
Markov Chain algorithm for different variants of SBMs in Chapter 3. In Chapter 4, we illustrate the
problem bias-variance tradeoff in the estimation of the partition by using a small example. We showed
that an advantage in Bayesian modeling is to perform model averaging as opposed to only considering
the partition that maximizes the posterior distribution.

Then, Chapter 5 considers the first probabilistic topic model (pLSI) and shows its equivalence to
the SBM formulation of document-word bipartite network. Then, we propose the new extended model
incorporating the additional information available about documents using the SBM with independent
layers.

Finally, Chapter 6 considers the Wikipedia articles as an example. Adopting an unsupervised
learning approach, we find that incorporating more information leads to better agreement between the
inferred partition of documents and the Wikipedia labelling. By comparing the results from detecting the
communities on the hyperlink network of documents only, it is also observed that partitions of documents
are more similar when incorporating words. Additionally, we also observe that the word tokens are
dominating in the inference, since there are much more words than the number of hyperlinks or metadata
tags.

7.2 Contributions
This thesis makes a number of contributions. Firstly, this project involved the development of an extensive
software program, coded in Python3, for the purpose of conducting numerical simulations. We write
all the code in functions or libraries where possible to facilitate future research. The topic modeling in
text analysis and community detection in network science, by nature, intersects with the discipline of
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computer science heavily, so computational analysis in Python3 is an indispensable part of the research
throughout the Honours year.

Secondly, we extend the previous work [28] by incorporating additional information available about
documents as additional layers in the same SBM framework. We consider three cases with incorporating
different amount of information present in the documents.

Thirdly, the previous research [28] does not perform a convergence analysis of the MCMC algorithm.
In this thesis, we consider multiple independent runs of the algorithms starting from privileged initial
states, which are obtained by the agglomerative heuristics. We find that the description lengths are
substantially reduced with MCMC iterations and annealing, showing that those are essential steps in the
inference of topic modeling with SBMs.

Last but not least, we compare the partition similarities of documents in two ways. Firstly, by com-
paring the final clustering of documents within and between different models. Secondly, we make use of
model averaging by collecting a large number of samples from the posterior, and obtaining the group
memberships with largest posterior probabilities.

7.3 Future Research
As future work, it would be interesting to apply the proposed topic models on other datasets. For
example, we can test the algorithms on scientific papers, where the links represent citations. For research
publications, additional auxiliary information that can be important includes the time of publication, the
publication type, the conference venue, and the authors.

In this thesis, we only consider the metadata labels about the documents. It is also important to
consider incorporating more information about words. Specifically, we can consider the word lexicons.
For instance, we can make use of synonym and antonym lexicons for sentiment analysis.

Another interesting future research would be on comparing the extended models developed in this
thesis with other topic models that make use of additional information for a complete analysis.

Instead of comparing the inferred partitions from each model with the “ground-truth” categories, a
more interesting comparison would be in the context of link prediction reconstruction [18]. Specifically, we
want to investigate whether adding word-document edges help in predicting missing/hidden hyperlinks.
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A.1 Technical Notes
A.1.1 The Prior Distribution for the Degree Distribution

Similarly to the partition of the nodes, the simplest choice we can make is to sample the degrees inside
each group from a uniform distribution,

P(k|e, b) = ∏
r

((
nr

er

))−1
(A.1)

where
((

nr
er

))
counts the number of possible degree sequences on nr nodes, constrained such that their

total sum equals er. But again, such a uniform assumption is not the best choice: If we sample from this
prior, we still obtain degree sequences where most nodes have very similar degrees.

In view of this, and following the same logic employed for the node partition, a better prior for k
should be conditioned on an arbitrary degree distribution η = {ηr

k}, with ηr
k being the number of nodes

with degree k that belong to group r,

P(k|e, b) = P(k|η)P(η|e, b) (A.2)

and where
P(k|η) = ∏

r

∏k ηr
k!

nr!
(A.3)

is a uniform distribution of degree sequences constrained by the overall degree counts, and

P(η|e, b) = ∏
r

q(er, nr)
−1 (A.4)

is the distribution of the overall degree counts. The quantity q(m, n) is the number of different degree
counts with the sum of degrees being exactly m and that have at most n non-zero counts.

We refer to [20] for further details of the above distribution.

A.1.2 Visualization Technique: The Multi-Dimensional Scaling Method
We devote this section to explain the methods used to produce the surface plot of description lengths as
shown in Fig. 4.2, page 25. The surface plot of description lengths depicts that the changes in description
length as the partition of network nodes varies. Although the surface appears to be continuous over that
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two dimensional partition space, in spite of the fact that the true space of partitions is high dimensional
and discretized. The steps for generating the surface plot is outlined as follows:

• partitions sampling
It is infeasible to calculate the description lengths of all possible partitions for most networks, so we
instead sample a subset of partitions. Suppose the number of nodes in the network of interest is N.
A number of K partitions are sampled from the posterior distribution using MCMC after sufficient
equilibration. And then store the K partitions with its corresponding description lengths.

• partition similarity measure
Then, we calculate the partition similarities between the K partitions using variation of information
(VI) [31]. We choose VI as a similarity measure since it is adequate for comparing partitions
of different sizes. And the VI is a true metric since it preserves the distance between different
partitions.

• data projection
Next, the K × K partition similarity matrix is projected down to two dimensions using multi-
dimensional scaling (MDS) [29]. The result of this projection is a two-dimensional representation
of the partition space that preserves the VI between partitions.

• surface interpolation
Since the two-dimensional partition space preserves the distance between different partitions of the
network, we thus use the Nearest-neighbor interpolation technique to fit an interpolated surface to
the description lengths of K partitions.

The last two steps are done by using the functionsmanifold.MDS andneighbors.NearestNeighbors
respectively from the scikit-learn package [32] in Python3.
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