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1 Problem Statement

Exploring the underlying causes of emotions can
have a wide range of practical uses, including but
not limited to the analysis of customer feedback
and tracking shifts in public opinions. The tradi-
tional emotion cause extracion (ECE) task (Gui
et al., 2016) aims to judge if each clause in the doc-
ument is the corresponding cause, provided the an-
notation of emotions in advance. The limitations
of this task are that it needs a large number of emo-
tion annotation, and the requirement that emotion
annotation first and cause extraction last ignores
inner relationship between emotions and causes.

To improve this task, a new interesting task,
called emotion-cause pair extraction (ECPE) first
proposed by Xia and Ding (2019), has emerged in
the area of text emotion analysis. It aims at ex-
tracting the potential pairs of emotions and their
corresponding causes in a document. Figure 1 pro-
vides an example of this task.

Figure 1: An example showing the emotion-cause pair
extraction (ECPE) task. Figure adapted from (Ding
et al., 2020b)
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the document is a sequence of words. The goal is
to extract all emotion-cause pairs in D, denoted by
P , given by:

P = {(cemo1 , ccau1) , (cemo2 , ccau2) , . . .} (1)

Here, (cemoj , ccauj) represents the j-th pair,
where cemoj ∈ D is an emotion clause, and ccauj ∈
D is the corresponding cause clause. It is impor-
tant to note that an emotion can have more than
one cause, and the same cause can be the stimulus
for multiple emotions. Additionally, the number
of ground-truth emotion-cause pairs varies for dif-
ferent documents.

Although recent methods have achieved impres-
sive progress, most of the methods are based on
complex neural architectures that model the inter-
relationship between emotion clauses and cause
clauses (Ding et al., 2020a,b; Wei et al., 2020; Wu
et al., 2020). This creates two problems: a label
sparsity issue due to the need to generate a pair-
ing matrix by enumerating all possible combina-
tions of clauses and then selecting valid emotion-
cause pairs (Wei et al., 2020), or an unrealistic tag-
ging scheme that attempts to model the relation-
ship between different clause types within a pre-
defined distance threshold (Ding et al., 2020b).
Additionally, in practice, creating a corpus with
annotated emotion-cause pairs is time-consuming.
Therefore, we came up with the idea of extracting
emotion-cause pairs from unannotated corpora.

In summary, the objective of this project is to
address the ECPE task (Xia and Ding, 2019) using
various approaches. Initially, we put forward our
own approach to tackle this problem. Addition-
ally, we aim to investigate the potential of Large
Language Models (LLMs) in solving this task



by employing effective prompt engineering tech-
niques. Moreover, we aim to reframe the task as
a multi-span extractive Question-Answering (QA)
problem (Segal et al., 2020).

2 What you proposed vs. what you
accomplished

We have outlined three tasks in our project pro-
posal and now summarize our progress as follows:

Task 1:

• We intended to rewrite the codebase of
the ECPE-MLL method (Ding et al., 2020b),
which was originally implemented using
TensorFlow 1.x and Python 2, using PyTorch.
However, since the existing codebase can-
not be executed, we have decided to develop
our own method from scratch to address this
challenge.

Task 2:

• We planned to evaluate the performance of
the LLM on this task.

• We aimed to conduct zero, one, and few-shot
experiments on the GPT-3.5 model and
evaluate its performance.

• We intended to test the impact of two types
of prompts, namely English and Chinese
versions.

• We planned to perform error analysis to
identify the emotion-cause pairs that GPT-3.5
fails to extract.

Task 3:

• Reconceptualize the ECPE problem as an
extractive QA task.

3 Related work

Pretrain and Fine-tuning Paradigm The exist-
ing methods to solve the ECPE task could be di-
vided into two-stage framework (Xia and Ding,
2019) and end-to-end framework (Ding et al.,
2020a,b; Wei et al., 2020; Wu et al., 2020). Both
frameworks fall into the category of fine-tuning
paradigm.

As an example for the two-stage framework,
(Xia and Ding, 2019) first extracts emotion clauses
and cause clauses separately, then obtain candidate
emotion-cause pairs by the Cartesian product, and

trains a classifier to filter out invalid pairs. The
shortcomings are that the emotion-cause pairs are
not extracted directly by the model, and the first
step is prone to propagate error to the second step.

In terms of end-to-end techniques, as illustrated
in Figure 2, they initially extract features at the
clause level from pre-trained embeddings or lan-
guage models such as BERT (Devlin et al., 2019).
Then, a contextual encoder is created to gener-
ate contextual representations of clauses. After-
wards, these representations are combined with
position information of the clause. Finally, the
output is utilized for predicting the task. Ding
et al. (2020a) extracts emotion-cause pairs through
in forms of a 2D square matrix. Fan et al. (2020)
proposed a transition-based framework to trans-
form the emotion-cause pairs extraction into a task
of parsing-like directed graph construction. Wei
et al. (2020) tackled the ECPE task from a rank-
ing perspective, modeled the inter-clause relation-
ships with graph attention and kernel-based rela-
tive position embedding. Ding et al. (2020b) pro-
posed a joint framework to solve the ECPE task
by sliding window multi-label learning. However,
these end-to-end approaches have two clear draw-
backs. Firstly, the current methods learn the re-
lationships among various task objectives implic-
itly, instead of explicitly modeling their connec-
tions. Secondly, including position information
could make the model sensitive to data distribu-
tion and reduce its robustness.

Figure 2: Illustration of the fine-tuning approach to the
ECPE task. Figure adapted from (Zheng et al., 2022)

Prompting LLMs Paradigm Recently, LLMs
such as ChatGPT, GPT-4 and BingChat are in-
creasingly being used to analyze text and an-
swer questions. Along with the explosive devel-
opment of LLMs, prompting engineering is also
a research area that has gained significant atten-
tion. Although it is already proved to be strong



in understanding in-context, we still do not know
whether it works well for the human-subjective
emotions and sentiment analysis. In a paper re-
leased in April 2023, Wang et al. (2023a) eval-
uated ChatGPT on five typical emotion-analysis
tasks in four cases including standard evaluation,
polarity shift evaluation, open-domain evaluation,
and sentiment inference evaluation. They found
that ChatGPT is not as good as fine-tuned BERT
and SOTA models in the most cases. The per-
formance could be improved significantly by few-
shot prompting, and proper prompts is not trivial.

Extractive QA Extractive QA refers to the task
of identifying a span of text within a given context
that provides an answer to a given question. In
the single-span extractive QA, the output/answer
is constrained to be a single contiguous span from
the input. Figure 3 illustrates how BERT (De-
vlin et al., 2018) is utilized in the single-span ex-
tractive QA task. However, single-span models
(Seo et al., 2018; Yu et al., 2018; Hu et al., 2018)
cannot work for questions whose answer is a set
of non-contiguous span from the input. To deal
with these questions, multi-span extractive QA (Li
et al., 2022), a type of QA task that involves iden-
tifying multiple relevant spans of text from a given
passage to answer a question, is introduced. In re-
cent years, multi-span approaches (Hu et al., 2019;
Chen et al., 2020; Segal et al., 2020; Cui et al.,
2021) have been gaining attention due to its abil-
ity to provide more complete and accurate answers
compared to single-span approaches. On the other
hand, shortcomings such as the limited span range
and complex training procedure may still exist-
ing. As an example of multi-span method, a fully-
differentiable framework is introduced by Segal
et al. (2020), where QA is casted as a sequence
tagging task. Each token is predicted whether it’s
included in the answer.

4 Experimental Setup

4.1 Summary Statistics of Dataset

We conducted the experiments on the ECPE cor-
pus dataset1 (Xia and Ding, 2019). This dataset
was constructed based on a public Chinese emo-
tion corpus from the SINA NEWS website 2. The
statistics of the dataset is summarized in Table ??.

1Available at: https://github.com/NUSTM/ECPE-
MLL/tree/master/data

2https://news.sina.com.cn/

Figure 3: A BERT-based approach to solving the
single-span extractive QA task. Figure adapted
from (Devlin et al., 2018).

# of documents 1945
Avg. # of clauses per document 14.77
Max. # of clauses per document 73
# of documents with 1 EC pair 1759
# of documents with 2 EC pairs 164
# of documents with 3 EC pairs 21
# of documents with 4 EC pairs 21
# of EC pairs 2154
# of EC pairs with 0 relative offset 508
# of EC pairs with 1 relative offset 1333
# of EC pairs with 2 relative offset 224
# of EC pairs with over 2 relative offset 89
Max. EC pair offset 12
Avg. offset of EC pairs 0.9981

Table 1: Summary Statistics of the dataset. EC stands
for absolute distance between emotion-cause pair.

Overall, the dataset contains 1,945 documents and
28,727 clauses. Among them, there are 1,746 doc-
uments with one emotion-cause pair, 177 docu-
ments with two emotion-cause pairs, and 22 docu-
ments with more than two emotion-cause pairs. In
theoretical terms, if the average number of clauses
per document is denoted as N , then the potential
number of candidate pairs for a document would
be N2. However, as indicated in Table 1, out of
1945 documents, 1746 of them contain a single
pair. This highlights the issue of label sparsity,
where the majority of documents have limited la-
beled pairs.

Table 2 shows the distribution of emotion type.
Note that some pairs can have more than one kind



of emotions. This could pose another challendge
for the model to learn the relationships between
emotion clauses and cause clauses. More than 99
% of pairs has only one emotion.

Emotion Number
Emotion with only one type
Sadness 567
Happiness 549
Fear 402
Anger 283
Surprise 85
Emotion with two type
Happiness & Fear 1
Anger & Sadness 1
Sadness & Disgust 1
Disgust & Anger 1
Happiness & Sadness 1
Disgust & Fear 1

Table 2: Distribution of emotion types

Due to causality and human habit, it’s empiri-
cal and intuitive that the distance between cause
clause position and emotion clause position is al-
ways short in a document. We also demonstrate
this hypothesis. As shown in the Table 1 and
Figure 4, the relative offset indicates the distance
(number of clauses) between two clauses in the
document. There are about 24 % and 62 % of all
emotion-cause pairs have relative offset 0 or 1, re-
spectively. In total, more than 96 % of all emotion-
cause pairs have a quite small relative offset, that
is, no greater than 2. This prior information can
be useful in two ways: 1) it can help us to filter
out the distant pairs in the documents when we de-
sign our own neural network, 2) it can potentially
improve our prompting strategy by providing such
information in the prompts.

4.2 Evaluation Metrics

In our experiments, we applies the same setting as
the work (Xia and Ding, 2019). We use the same
data split, specifically allocating 80% for the train-
ing set, 10% for the test set, and another 10% for
the validation set. In terms of the evaluation met-
rics, the precision, recall and F1 score in Xia and
Ding (2019) are defined as follows.

Figure 4: Distribution of distances between emotions
and causes in our dataset.(Xia and Ding, 2019)

Precision =
# of correctly predicted pairs

# of predicted pairs

Recall =
# of correctly predicted pairs

# of ground-truth pairs

F1 =
2× Precision×Recall

Precision+Recall

5 Baselines

Upon discovering this ECPE task that aligned
with our interests, we promptly conducted per-
formance tests on ChatGPT. To our surprise, we
observed unsatisfactory results after several at-
tempts. Subsequently, we randomly selected 100
samples from the corpus and used simple prompts
to test the performance of the GPT-3.5 model in a
zero-shot setting. The resulting precision, recall,
and F1 scores were 0.0552, 0.1797, and 0.0845,
respectively. Based on these scores, we decided
that the GPT-3.5 model would serve as our base-
line for further experimentation.

6 Proposed approach

6.1 Task 1
6.1.1 Architecture
As we have discussed before, at the beginning of
the study, we planned to re-implement (Ding et al.,
2020b). However, we found that they use the out-
of-date Python 2.7 and TensorFlow 1.0, which is
uninterpretable and confusing. Besides, we can-
not even run their code based on their guideline on
GitHub. Therefore, it is impossible for us to build
our system on top of their system and only mod-
ify some parameters or features. Instead, we turn



to re-write the whole system using Python 3 and
Pytorch by ourselves, where we designed a neural
architecture different from the paper (Ding et al.,
2020b). Specifically, we refer to the structure of
theirs, as well as add some features to improve its
ability to learn.

Our model is as Figure 5 shows. We first use
a BERT tokenizer to get the vectorized tokens of
those Chinese words and then feed them into a pre-
trained BERT model. Both the tokenizer and the
pre-trained model are BERT-Base-Chinese. The
output of BERT is fed into a Bi-LSTM layer, fol-
lowed by a multi-head attention module. After
that, Iterative Synchronized Multitask Learning
(ISML) model is applied to learn the embedding of
emotion-cause pairs, as well as predict whether the
clause is emotion/cause or not. As Figure 5 shows,
the ISML model contains several cascaded ISML
blocks. In each block, we duplicate the input (sk)
into two symmetric branches: the emotion branch
and the cause branch. Take the emotion branch
as an example, we first apply a Bi-LSTM layer
to learn the emotion-specific representation re,ki ,
then we use a linear layer with softmax to predict
the probability of each clause to be an emotion
clause (ŷe,k). Finally, we concatenate the input
of the current ISML block k (sk) and the output
of both emotion branch (ŷe,k) and cause branch
(ŷc,k) along the final dimension ([sk, ŷe,k, ŷc,k]).
The output will be the input of next ISML block
k + 1.

After N ISML blocks in total, we get the fi-
nal representation of emotion (re,Ni ) and cause
(rc,Ni ). In order to predict the pairs of emotions
and causes, we first utilize a linear layer to map
re,Ni into a D × D Emotion-pivot cause extrac-
tion (D is the max number of clauses in a para-
graph). This extraction shows the potential re-
lationship of a cause clause to the current emo-
tion clause. According to previous works (Wei
et al., 2020), most emotion-cause pairs are in
a distance of ≤ 3 clauses. Therefore, in or-
der to reduce the searching space, we apply a
sliding window mask on top of the scores to
only focus on the adjacent clauses of the current
clause. In other words, for emotion clause ci, we
only consider 2|W | + 1 candidate cause clauses:
ci−|w|, . . . , ci−1, ci, ci−1, . . . , ci+|w|.

Finally, we turn these two scores into probabil-
ities using the following calculation, aligned with

(Ding et al., 2020b):

p(y
cmlj
i = 1|ci) = ŷi

cmlj

=
1

1 + expW
cmlj re,Ni +bcmlj

p(y
cmlj
i = 0|ci) = 1− ŷi

cmlj

We also use the same method to get the Cause-
pivot emotion extraction probabilities for the
cause branch. In the end, we use logic OR strategy
to make the decision of prediction. Specifically,
clause p and clause q are predicted as an emotion-
cause pair if and only if ŷicmlj > threshold and
ŷi

emlj > threshold. The threshold tuning will be
discussed later.

As for the loss function, we use the same
loss component as (Ding et al., 2020b):
LISML−N ,LCMLL, and LEMLL, where:

LISML−N = −
N∑
t=1

(

|d|∑
i=1

(ye
i × log (ŷe,t

i ))

+

|d|∑
i=1

(yc
i × log (ŷc,t

i )))

LCMLL = −
|d|∑
i=1

|w|∑
j=−|w|

(y
cmlj
i × log ŷ

cmlj
i

+ (1− y
cmlj
i )× log(1− ŷ

cmlj
i ))

LEMLL = −
|d|∑
i=1

|w|∑
j=−|w|

(y
emlj
i × log ŷ

emlj
i

+ (1− y
emlj
i )× log(1− ŷ

emlj
i ))

6.1.2 Issue of the referred paper and our
improvement

We’ve demonstrated the architecture of our model
in the last section. Here, we will focus on the dif-
ference between our model and the model in (Ding
et al., 2020b) and the reasons why we take these
steps.

In the beginning, we actually used the exact
same model as (Ding et al., 2020b). However, dur-
ing our preliminary study for training, we found
that this model is very likely to underfit: the learn-
ing of the model converges too fast no matter how
we tune the learning rate and other parameters,
while the precision is much lower (around 1%)
than their reported values. As a result, we decide
to increase its ability to represent the features and
learn the relationship between clauses:



Figure 5: Overview of our proposed neural architecture to solve the emotion cause pair extraction task.

1. Use pretrained BERT-Base-Chinese tok-
enizer and model to encode the input texts
instead of Word2Vec only: The emotion-
cause pairing task is difficult. The origin
model only uses Word2Vec + BiLSTM + Lin-
ear, which we think is not enough to repre-
sent the embedding relationship among the
clauses. A large encoder could help with
this problem. However, it could cost too
much time and money for us to train one
from scratch by ourselves. As a result, a pre-
trained model can be a good solution, since
at the beginning stage of the model, we just
need to learn some latent correlations and it
does not need to be very task-related. During
training time, this BERT encoding layers are
frozen.

2. Use multi-head transformer instead of
self-attention: Single-head single-layer self-
attention is of low capability. Besides, this
is a multi-label task, which means the same
clause could have several different labels.
Therefore, a multi-head transformer makes
more sense.

3. Increase the number of layers in Bi-
LSTM: To increase the capability of Bi-
LSTM.

4. Add activation layer: In the origin paper,
there’s no activation at all, even for linear

layers after the output of Bi-LSTM. How-
ever, without activation, the capability of the
model could be downgraded, since adjacent
linear layers could couple together and work
as a single layer.

After applying the above methods to improve
the capability of the model. We realize another as
well as the biggest problem: the dataset and labels
are seriously imbalanced. In fact, take one para-
graph of D clauses as an example, we can have
D×D

2 possible emotion-cause pairs as a full per-
mutation of all clause pairs, where only one or two
of them are true positives, as Figure 6 shows. In
other words, the ratio of false labels (not e-c pairs)
to true labels (e-c pairs) could be of the magnitude
of D2. Note that the maximum D we set is 50, so
this ratio could be more than a thousand.

Due to such an imbalance, it is very hard for
us to train the network: if using normal train-
ing strategies, the model will predict every pair as
false (i.e. not an e-c pair). The reason is the num-
ber of 0 (false) is too much more than 1 (true), so
the loss contributed by false positive (0 → 1) is
much larger than false negative (1 → 0). During
optimization, the model tends to increase the prob-
ability of 0, because even if it predicts 1 as 0, the
loss punishment is negligible.

In order to solve this imbalance issue, (Ding
et al., 2020b) proposes a sliding window mech-
anism to reduce the output searching space. We
also utilize this in our implementation. However,



only using a sliding window is far from enough,
because although we reduce the number of unre-
lated label 0s, its amount is still far more than that
of label 1. And the authors of that paper have no
solution to the remaining imbalance problem.

In that case, we strongly doubt the results pro-
vided by (Ding et al., 2020b). There are 3 main
reasons: (1) They do not deal with the imbalanced
data in an effective way as ours, which will be dis-
cussed below. (2) They use simple and weak struc-
tures (Word2Vec + Bi-LSTM) but achieve very
high performance ( 70%), which even much out-
performs GPT 3.5 (our baseline as well). This is
hard to be persuasive. (3) We found issues and
wrong implementation in their code, which is dif-
ferent from their paper. This makes their correct-
ness a doubt.

As a result, we decide not to re-implement their
paper totally and not to use their results as a base-
line. We use GPT 3.5 as a baseline instead, as
mentioned in section 5.

Figure 6: The demonstration of inherently imbalanced
data labels

Therefore, in order to solve the imbalance issue,
we need extra efforts and tricks.

6.1.3 Solving the issue of imbalanced data
and labels

The imbalance of the dataset is unpreventable: the
emotion-cause pairs are inherently much less than
other pairs. As a result, vanilla data augmentation

methods may not work. Besides, contrastive learn-
ing usually requires heavy data augmentation and
a very large batch size. As a result, we can not
apply such strategies easily, and that’s beyond the
scope of our report.

In contrast, we apply several simpler but as ef-
fective tricks as below:

1. Cost-sensitive training: As we discussed in
the above section, the normal loss functions
(such as cross-entropy) are contributed more
by false positive (0 → 1) than false negative
(1 → 0) since there are much more 0 than
1. In order to balance their influence on the
result, we use a biased loss function. Specif-
ically, we tune the weight of loss of false
negative (1 → 0) to be larger than that of
false positive (0 → 1). In other words, we
have lossbias = w × LossCE(FN) + 1 ×
LossCE(FP ), where w controls the weight
amplification to the original cross-entropy
loss of false negative. We found that this
method prevents the model from only out-
putting 0 effectively.

2. Imbalanced decision threshold: Only tun-
ing the loss function is still not enough. It’s
very hard to control. If w is too small, the
model will predict too many 0; while if w is
too large, the model will predict too many 1
since now the punishment on FN is larger.
Therefore, we also need to introduce other
variables such as changing the threshold we
use for decisions. In a normal balanced
dataset, the criteria should be ŷi

cmlj > 0.5
and ŷi

emlj > 0.5, since this will lead to the
same threshold for both 0 and 1. In contrast,
in our more imbalanced dataset, we tune the
threshold also in an imbalanced way to a
value greater than 0.5. This will lead to more
careful prediction of label 1.

3. dynamic loss function: We believe that
the order and frequency that the model
deals with different loss are very impor-
tant. In other words, optimizing the loss on
judging whether a clause is emotion/cause
(LISML−N ) and the loss on predicting the
emotion-cause pairs (LCMLL,LEMLL) is dif-
ferent and don’t have to take place simultane-
ously. Therefore, we can first let the model
learn the emo/cause clause finding and then



pair finding, alternatively. We implement this
but do not actually use it for our final results.

6.1.4 Nonuniform input length
Since the number of clauses varies for different
documents, the input length of our model is dif-
ferent. Consequently, we have to use padding first
to make the size suitable. Besides, we also filter
the output to the range of the length of the para-
graph, as well as masking the intermediate outputs
between different components of the model to pre-
dict reasonable output and stop the unwanted gra-
dients from flowing backward.

6.1.5 Computing resource
We utilize Google Cloud Compute services for
model training. The hardware consists of an Intel
Skylake CPU (13GB) platform along with a sin-
gle NVIDIA T4 GPU (with 16GB of memory). In
order to execute our code successfully, it is nec-
essary for the GPU to possess a memory capacity
exceeding 8GB.

6.2 Task 2

In this task, we explored the ability of Large
Language Models (LLMs) to solve this ECPE
problem through proper prompt engineering tech-
niques. We attempted various prompt formats
and methods to improve precision, recall, and F1
scores. The main methods employed were instruc-
tion prompt and few-shot learning. In the few-
shot learning approach, we used a maximum of 5
examples and their corresponding answers as the
training data. Including more examples would ex-
ceed the token limit due to increased information
length.

For the instruction prompt, we adopted a Chain-
of-Thought format similar to the one described in
the paper (Wang et al., 2023b). This particular in-
struction prompt yielded the highest score: pre-
cision 0.1509. The specific instructions included
tasks such as ”1. Describe in one sentence the
emotion contained in the given document and its
corresponding reason. 2. Output the identifier of
the emotion clause from Task 1, considering only
the one with the strongest intensity,” and so on.

Due to time constraints, we also intended to ex-
plore the combination of few-shot learning with
the aforementioned instruction prompt to achieve
more complex prompts. However, the combina-
tion of complex prompts and few-shot learning ex-
amples posed limitations in terms of the maximum

token count and the need for annotation. Task-
specific step-by-step instructions consumed a sig-
nificant number of tokens, and adding few-shot ex-
amples and their corresponding answers easily ex-
ceeded the token limit. Moreover, annotating the
few-shot examples required additional resources
and time, which we were unable to allocate before
writing the paper.

In our code, the file
task2/n_shot/ecpetest.ipynb
contains zero-shot, one-shot, and five-
shot experiments with Chinese data and
English instruction prompts. The file
task2/n_shot/ecpetest2.ipynb in-
cludes zero-shot experiments with Chinese
data and instruction prompts incorporating
”pseudo Chain-of-Thought (CoT)”. The file
task2/zeroshot_example/response.csv
contains GPT-3.5’s responses to all documents. It
is worth noting that not all answers are the pairs
of clause numbers we want. Bad answers contain
unexpected words or symbols. After removing
these bad responses, responses to 530 documents
(about a quarter of all documents) remained. The
main difference between our approach and the
baselines lies in the performance of few-shot
learning. As we utilized OpenAI’s GPT3.5
text-davinci-003 model, there was no
need to run any models locally for this task. The
execution process is straightforward, requiring
only the provision of an API key. However, it
comes at a considerable cost.

7 Results

7.1 Task 1
7.1.1 Implementation Details
After heuristic searching of hyperparameters, we
achieve a result of precision of 0.2475, recall of
0.7329, and F1 score of 0.3700.

We have a total of 1945 documents, which are
split into training, validation, and test sets with
a ratio of 8:1:1. For all sets, we split each of
them further into 20 pieces for flexibility in train-
ing and testing. To train our model, we utilize the
Adam optimizer with a learning rate of 0.0003 and
a batch size of 36 for 30 epochs. We use linear
warmup with a warmup proportion of 0.1. For
the biased loss, we use a weight of 30. We use
an imbalanced decision threshold of 0.75 (to pre-
dict ”is” an emotion-cause pair). We use 16 ISML



blocks. Additionally, we set the l2 regularization
coefficient to 1e-5. The hidden size of all layers is
100. The selection of the best model is based on
the highest F1 scores on the validation set, and we
evaluate the model’s performance on the test set.

7.1.2 Ablation Studies
We conduct ablation studies to analyze the effects
of different components in our proposed neural ar-
chitectures.

The initial ablation study aimed to compare the
performance of self-attention and multi-head at-
tention. Table 3 presents the results, demonstrat-
ing that multi-head attention significantly outper-
forms self-attention across various evaluation met-
rics.

Modules Precision Recall F1
Self-Attention 0.0632 0.3572 0.1073
Multi-head Attention 0.2475 0.7329 0.3700

Table 3: Ablation studies on effects of different word
attention modules of the proposed network.

In order to investigate the impact of the ISML
block, we perform an additional ablation study by
adjusting the number of ISML blocks. As shown
in Table 4, it is observed that as the number of
iterations increases, the model’s performance on
this task generally improves, particularly when go-
ing from 1 to 2 iterations. One potential expla-
nation for this is that ISML-2 initially introduces
the interaction between emotion and cause. No-
tably, when the number of iterations reaches 16,
we achieve the best performance in terms of the
evaluation metrics.

Modules Precision Recall F1
ISML-1 0.0396 0.0895 0.0498
ISML-2 0.1023 0.2055 0.1408
ISML-16 0.2475 0.7329 0.3700

Table 4: Ablation studies on the number of ISML
blocks of the proposed network.

7.2 Task 2

Based on the results obtained from running
GPT3.5 text-davinci-003, we have summa-
rized the following observations:

1. The performance of prompts that combine
Chinese data with English instructions is no-
ticeably inferior to that of prompts consist-

ing of Chinese data with Chinese instruc-
tions. This indicates that GPT text-davinci-
003 does not effectively integrate information
from different languages within the ECPE
project. For data in different languages, it is
recommended to use instruction prompts in
the corresponding language.

2. The performance of few-shot learning is sig-
nificantly higher than that of zero-shot learn-
ing. Although we only conducted experi-
ments and observed the performance of few-
shot and zero-shot learning in an environment
where Chinese data was combined with En-
glish instructions, the improved performance
of GPT still suggests the effectiveness of few-
shot learning in LLM for handling ECPE
tasks.

8 Error analysis

Sometimes GPT consistently provides incorrect
responses. Many emotionless sentences are also
flagged as having emotions by GPT. It seems
that GPT is unable to accurately capture the im-
plied emotions in sentences through understand-
ing the context. Besides, another main issue en-
countered was the inability to capture the most
prominent emotion, resulting in many instances
where the corresponding cause lacked logical co-
herence. When successfully identifying the main
emotion, there was a high probability of obtain-
ing the correct result. The cases where this prob-
lem arose typically involved multiple descriptions
of psychological activities or metaphors. Due to
the presence of more than 10 sentences in each
text, we did not perform a comprehensive analy-
sis of numerous examples. Instead, our approach
involved randomly selecting 10 incorrect and 10
correct results, comparing all the choices provided
by GPT, and analyzing the patterns.

9 Contributions of group members

List what each member of the group contributed to
this project here. For example:

• Zhenyu Lei: implemented the second half
network in task 1(from ISML blocks to pre-
diction); implemented several features, such
as imbalanced loss functions and threshold;
debugged and tuned the hyperparameters and
conducted experiments for task 1;



Zero-Shot Five-Shot
Precision Recall F1 Precision Recall F1

GPT 3.5 (Baseline) 0.0552 0.1797 0.0845 0.1155 0.2260 0.1529
GPT 3.5 Prompt with Pairs Number 0.0381 0.1217 0.0581 0.1170 0.2696 0.1632
GPT 3.5 Prompt with Sequence Hint 0.05785 0.2434 0.0935 0.1125 0.2260 0.1502
GPT 3.5 Prompt with Both 0.0607 0.2 0.0931 0.1164 0.2521 0.1593
GPT 3.5 Chinese Instruction Prompt 0.1509 0.2087 0.1751 - - -
GPT 3.5 English Instruction Prompt 0.1156 0.1478 0.1297 - - -

Table 5: Baseline shows in the left part of Figure 8: zero shot with instruction prompt. Prompt with Pairs Number
represents a hint about limitation of the number of pairs expected to output. Prompt with Sequence Hint represents
a hint about the sequence of the appearance about the cause sentence and emotion sentence. Prompt with Both
represents a hint includes both two guidence mentioned above. Chinese Instruction Prompt and English Instruction
Prompt shows in the Figure 8.

• Yachan Liu: implemented and did some zero-
shot experiments for task2, implemented
task0, did a simple example for task3.

• Yuanming Tao: implemented the dataloader,
the first half of the neural network modules,
the training and evaluation loops, prepared
figures, and conducted ablation studies for
Task 1, conducted experiments to obtain pre-
liminary results for Task 3.

• Xiaocheng Zhang: implemented and did the
experiment on half of task2. Include zero-
shot on Chinese prompt and English prompt,
few-shot with different prompts.

All members contributed to the report writing.

10 Conclusion

10.1 Task 1

It is remarkable that despite using significantly
fewer parameters than GPT-3.5, our model
achieved a large precision improvement from
0.1509 to 0.2475. This demonstrates the effective-
ness and efficiency of our approach in optimizing
the model’s performance for the seriously imbal-
anced dataset and labels. However, since the recall
is still higher than the precision, it seems that the
imbalance issue has not been solved thoroughly,
although we’ve already achieved great progress
compared to general LLM such as GPT 3.5.

In the future, data augmentation and contrastive
learning are worth studying for this task. The im-
plementation will not be trivial: the inherent spar-
sity of emotion-cause pairs prevents the vanilla
data augmentation from working, so we need a
smart way to do this. Besides, contrastive learning

needs contrastive loss and heavy data augmenta-
tion. We believe these methods could be promis-
ing to solve the imbalance in the future.

10.2 Task 2
In conclusion, the obtained results are reasonable
and predictable. The primary challenge encoun-
tered during this task stemmed from the cost as-
sociated with using LLM. The longer the text, the
higher the cost incurred for each piece of informa-
tion, necessitating a reduction in interactions with
GPT and a simplification of the prompts. Addi-
tionally, the constraint of maximum token length
prevented us from attempting few-shot learning
with more than 5 examples. If this task were
to continue, we would consider incorporating in-
struction prompts with ”pseudo Chain-of-Thought
(CoT)” and the few-shot learning approach, ex-
ploring new prompts to assess whether GPT can
achieve better performance. Furthermore, we
would explore different GPT models such as GPT-
3.5-turbo.



Figure 7: A example of zero-shot GPT prompt, the left part shows the baseline prompt and GPT’s feedback. The
right part is a translation of the text.



Figure 8: Four examples of few-shot GPT prompt. Upper left graph is a one-shot example without any futher hint.
Upper right graph is a one-shot example with both hint includes the limitation of pair number and sequence. Lower
left graph is the Chinese Instruction Prompt which used Chinese with several tasks which guide GPT to generate
’relative’ result. Lower right graph is the English version of the Chinese Instrction Prompt.



AI Disclosure

• Did you use any AI assistance to complete
this proposal? If so, please also specify what
AI you used.

– No.

If you answered yes to the above question, please
complete the following as well:

• If you used a large language model to assist
you, please paste *all* of the prompts that
you used below. Add a separate bullet for
each prompt, and specify which part of the
proposal is associated with which prompt.

– your response here

• Free response: For each section or para-
graph for which you used assistance, describe
your overall experience with the AI. How
helpful was it? Did it just directly give you
a good output, or did you have to edit it? Was
its output ever obviously wrong or irrelevant?
Did you use it to generate new text, check
your own ideas, or rewrite text?

– your response here
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